
Siren Federate User Guide

Copyright © 2018 Sindice Ltd trading as Siren. All rights reserved.

Trademarks
Investigative Intelligence, Siren Alert, Siren Federate, Siren Investigate, and Siren Platform are trademarks of Sindice Ltd trading as Siren.

CentOS and Red Hat are trademarks of Red Hat Inc., registered in the U.S. and other countries.

CrunchBase is a trademark of CrunchBase Inc., registered in the U.S. and other countries.

Elasticsearch, Kibana, Logstash, and Packetbeat are trademarks of Elasticsearch BV, registered in the U.S. and other countries.

Excel, SQL Server, and Windows are trademarks of Microsoft Corporation, registered in the U.S. and other countries.

Java, JavaScript, and Oracle are trademarks of Oracle Corporation, registered in the U.S. and other countries.

Search Guard is a trademark of Floragunn GmbH, registered in the U.S. and in other countries.

All other trademarks are the property of their respective owners. All trademarks, registered trademarks and copyrighted terms in the Siren Investigate demonstration
data set are the property of their respective owners.

Patents
Siren Federate patent pending:

• Irish Application Number S2018/0326

Table of Contents

Siren Federate ... 1
Federation of external databases .. 1
Distributed joins between indices .. 1

How does Siren Federate join compare with parent-child .. 1
What data model does it operate on ... 2

Architecture .. 3
Distributed join workflow ... 3
Query planning and optimization .. 4
IO .. 4

Getting started .. 6
Prerequisites .. 6
Installing the Siren Federate Plugin .. 6
Starting Elasticsearch .. 7
Loading Some Relational Data .. 7
Relational Querying of the Data .. 8

Set up Federate ... 11
Configuring logger .. 11

JDBC drivers ... 11
Impala JDBC connector ... 11

Modules .. 12
Planner .. 12
Memory .. 12
IO .. 13

Tuple collector ... 13
Thread pools ... 13
Connector ... 14

Search APIs ... 15
Search API ... 15
Multi search API .. 15
Search request .. 15

Parameters .. 15
Search response .. 15
Cancelling a Request ... 15

Usage ... 15
Query DSL ... 17

Join query .. 17
Example .. 17
Scoring capabilities ... 17
Compatibility with nested query .. 18

Cluster APIs ... 19
Connecting to JDBC datasources .. 22

Settings ... 22
JDBC node settings ... 22
Common configuration settings .. 22

Siren Federate User Guide

Authentication ... 23
JDBC driver installation and compatibility ... 27

API .. 29
Datasource management .. 29

Datasource creation and modification .. 29
Datasource deletion .. 29
Datasource listing ... 29
Datasource validation ... 29

Virtual index management .. 30
Virtual index creation and modification ... 30
Virtual index deletion .. 30
Virtual index listing .. 30

Operations on virtual indices .. 30
Type conversion ... 31
Supported search queries .. 31
Supported aggregations .. 31

Known Limitations ... 32
Troubleshooting ... 32

Cannot reconnect to datasource by hostname after DNS update ... 32
License API .. 33

Usage ... 33
Set up Security .. 34

Connector ... 34
Search Guard .. 34

Performance considerations .. 35
Join types .. 35
Numeric or string attributes .. 35
Tuple collector settings .. 35

Glossary .. 36

Siren Federate User Guide

Siren Federate

The Siren Federate plugin extends Elasticsearch with a federation layer to query external databases with the
Elasticsearch API and distributed join capabilities across indices and external databases.

Federation of external databases
Siren Federate provides a module, called “Connector”, which transparently maps external database systems to
“Virtual Indices” in Elasticsearch. Requests to the Elasticsearch APIs, such as the Mapping or Search APIs,
are intercepted by the Connector module. These requests are translated to the external database dialect and
executed against the external database. This enables Siren Investigate to create and display dashboards for da-
ta located in external databases as if they were Elasticsearch’s indices.

Distributed joins between indices
Siren Federate extends the Elasticsearch DSL with a join query clause which enables a user to execute a join
between indices (being virtual or not). The join capabilities are implemented on top of an in-memory distributed
computing layer which scales with the number of nodes available in the cluster.

The join capability is currently limited to a (left) semi-join between two set of documents based on a common
attribute, where the result only contains the attributes of one of the joined set of documents. This join is used to
filter one set of documents with a second document set. It is equivalent to the EXISTS() operator in SQL.
Joins on both numerical and textual fields are supported, but the joined attributes must be of the same type.
You can also freely combine and nest multiple joins using Boolean operators (conjunction, disjunction, negation)
to create complex query plans. It is fully integrated with the Elasticsearch API and is compatible with distributed
environments.

How does Siren Federate join compare with parent-child
The Siren Federate join is similar in nature to the Parent-Child (https://www.elastic.co/guide/en/elasticsearch/
guide/current/parent-child.html) feature of Elasticsearch: they perform a join at query-time. However, there are
important differences between them:

• The parent document and all of its children must live on the same shard, which limits its flexibility. The
Siren Federate join removes this constraint and is therefore more flexible: it allows joining documents
across shards and across indices.

• Thanks to the data locality of the Parent-Child model, joins are faster and more scalable. The Siren Feder-
ate join on the contrary needs to transfer data across the network to compute joins across shards, limiting
its scalability and performance.

There is no “one size fits all” solution to this problem, and you need to understand your requirements to choose
the proper solution. As a basic rule, if your data model and data relationships are purely hierarchical (or can be
mapped to a purely hierarchical model), then the Parent-Child model might be more appropriate. If on the con-
trary you need to query both directions of a data relationship, then the Siren Federate join might be more ap-
propriate.

Siren Federate User Guide

1

What data model does it operate on
The most important requirement for executing a join is to have a common shared attribute between two indi-
ces. For example, let’s take a simple relational data model composed of two tables, Articles and Compa-
nies, and of one junction table ArticlesMentionCompanies to encode the many-to-many relation-
ships between them.

This model can be mapped to two Elasticsearch indices, Articles and Companies. An article document
will have a multi-valued field mentions with the unique identifiers of the companies mentioned in the article.
In other words, the field mentions is a foreign key in the Articles table that refers to the primary key of
the Companies table.

It should be straightforward for someone to write an SQL statement to flatten and map relationships into a
single multi-valued field. We can see that, compared to a traditional database model where a junction table is
necessary, the model is simplified by leveraging multi-valued fields.

Siren Federate User Guide

2

Architecture

Siren Federate is designed around the following core requirements:

• Low latency, real time interactive response – Siren Federate is designed to power ad hoc interactive, read
only queries such as those sent from Siren Investigate.

• Implementation of a fully featured relational algebra, capable of being extended for advanced join condi-
tions, operations and statistical optimizations.

• Flexible in-memory distributed computational framework.
• Horizontal scaling of fully distributed operations, leveraging all the available nodes in the cluster.
• Federated – capable of working on data that is not inside the cluster, for example using JDBC connections.

Siren Federate is based on the following high level architecture concepts:

• A coordinator node which is in charge of the query parsing, query planning and query execution. We are
leveraging the Apache Calcite engine to create a logical plan of the query, optimize the logical plan and
execute a physical plan.

• A set of worker processes that are in charge of executing the physical operations. Depending on the type
of physical operation, a worker process is spawned on a per node or per shard basis.

• An in-memory distributed file system that is used by the worker nodes to exchange data, with a compact
columnar data representation optimized for analytical data processing, zero copy and zero data serializa-
tion.

Distributed join workflow
When sending a (multi) search request with one or more nested joins, the node receiving the request will be-
come the “Coordinator”. The coordinator node is in charge of controlling and executing a “Job” across the avail-
able nodes in the cluster. A job represents the full workflow of the execution of a (multi) search request. A job is
composed of one or more “Tasks”. A task represents a single type of operations, such as a Search/Project
or Join, that is executed by a “Worker” on a node. A worker is a thread that will perform a task and report the
outcome of the task to the coordinator.

For example, the following search request joining the index companies with articles:

GET /_siren/companies/search
{
 "query" : {
 "join" : {
 "type": "HASH_JOIN",
 "indices" : ["articles"],
 "on": ["id", "mentions"],
 "request" : {
 "query" : {
 "match_all": {}
 }
 }
 }

Siren Federate User Guide

3

 }
}

will produce the following workflow:

Query Workflow

The coordinator will execute a Search/Project task on every shard of the companies and articles
indices. These tasks will first execute a search query to compute the matching documents, then scan the id and
mentions fields of the matching documents and shuffle them to all the nodes of the cluster. Once these tasks
are completed, the coordinator will execute a Hash Join task on every node of the cluster. The Hash Join
task will join the two streams of data that were sent by the two previous Search/Project tasks to compute
a set of document ids for the companies index. These documents ids will be transferred back to their respec-
tive shards and used to filter the companies index.

This particular workflow enables Federate to push all the filtering predicates (e.g., terms, range, Boolean quer-
ies) down to Elasticsearch, leveraging the indices for fast computation. The Join task is currently limited to
compute the intersection of two different set of documents based on a join condition. This reduces the amount
of data allocated in memory, the amount of data transferred across the network, and the workload performed
by a task.

Query planning and optimization
The coordinator node is leveraging Apache Calcite for planning the job execution. A search request is first
parsed into an abstract syntax tree before being transformed into a logical relational plan. A set of rules will
then be applied to optimize the logical plan. We leverage both the Hep and Volcano engine to optimize the
logical plan using heuristic and statistical information. The logical plan is then transformed into a physical plan
before being executed.

The physical plan represents a tree of tasks to be executed. The coordinator will try to execute tasks concurrent-
ly when possible. In the previous example, the two Search/Project tasks are executed concurrently, and
the Hash Join task is executed only after the completion of the two Search/Project tasks.

When handling a multi search request, each request will be planned separately, each one producing a physical
plan. However, before the execution of the physical plans, the planner will combine all the physical plans into a
single one, by mapping identical operations to one single task. We can see that as a step to fold multiple trees
of tasks into a single directed graph model, where overlapping operations across trees will become one single
vertex in the graph. This is useful to reuse computation across multiple requests.

IO
The shuffling and transfer of data produced by a task is handled by a Collector. A collector will collect
data, serialize it into a compact columnar data representation, and transfer it in the form of binary packets.

Siren Federate User Guide

4

Different collector strategies are implemented that are adapted to different tasks. For example, in case of a
Hash Join, a Search/Project task will use a collector with a hash partitioning strategy to create small
data partitions and shuffle these partitions uniformly across the cluster.

On the receiver side, when a packet is received, it is stored as is (without deserialization) in an in-memory data
store. Tasks, such as the Join task, will directly work on top of these binary data packets in order to avoid
unnecessary data copy and deserialization.

The binary data packets are created, stored and manipulated off-heap. This helps to reduce unnecessary loads
on the JVM and Garbage Collection when dealing with a large amount of data. We are leveraging the Apache
Arrow project for the allocation and management of off-heap byte arrays.

Siren Federate User Guide

5

Getting started

In this short guide, you will learn how you can quickly install the Siren Federate plugin in Elasticsearch, load two
collections of documents inter-connected by a common attribute, and execute a relational query across the two
collections within the Elasticsearch environment.

Prerequisites
Unless you are using the complete Siren Platform package, you must download and installed the version of
Elasticsearch that you want to use. If you do not have an Elasticsearch distribution, you can run the following
commands where <version> is the version you want to use, for example 5.6.9:

$ wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-
<version>.zip
$ unzip elasticsearch-<version>.zip
$ cd elasticsearch-<version>

Installing the Siren Federate Plugin
Before starting Elasticsearch, you have to install the Siren Federate plugin. Assuming that you are in your Elas-
ticsearch installation directory, you can run the following command where <version> is the Siren Federate ver-
sion:

$./bin/elasticsearch-plugin install file:///<path to Siren Federate plugin>/siren-
federate-<version>-SNAPSHOT-plugin.zip
-> Downloading file:///<path to Siren Federate plugin>/siren-federate-<version>-
SNAPSHOT-plugin.zip
[===] 100%
@@@
@ WARNING: plugin requires additional permissions @
@@@
* java.io.FilePermission cloudera.properties read
* java.io.FilePermission simba.properties read
* java.lang.RuntimePermission accessClassInPackage.sun.misc
* java.lang.RuntimePermission accessClassInPackage.sun.misc.*
* java.lang.RuntimePermission accessClassInPackage.sun.security.provider
* java.lang.RuntimePermission accessDeclaredMembers
* java.lang.RuntimePermission createClassLoader
* java.lang.RuntimePermission getClassLoader
...
See http://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html
for descriptions of what these permissions allow and the associated risks.

Continue with installation? [y/N]y
-> Installed siren-federate

In case you want to remove the plugin, you can run the following command:

$ bin/elasticsearch-plugin remove siren-federate

-> Removing siren-federate...
Removed siren-federate

Siren Federate User Guide

6

https://www.elastic.co/downloads/elasticsearch

Starting Elasticsearch
To launch Elasticsearch, run the following command:

$./bin/elasticsearch

In the output, you should see a line like the following which indicates that the Siren Federate plugin is installed
and running:

[2017-04-11T10:42:02,209][INFO][o.e.p.PluginsService] [etZuTTn] loaded plugin
[siren-federate]

Loading Some Relational Data
We will use a simple synthetic data set for the purpose of this demo. The data set consists of two collections of
documents: Articles and Companies. An article is connected to a company with the attribute mentions. Arti-
cles will be loaded into the articles index and companies in the companies index. To load the data set,
run the following command:

$ curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/articles'
$ curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/articles/
_mapping/article' -d '
{
 "properties": {
 "mentions": {
 "type": "keyword"
 }
 }
}
'
$ curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/companies'
$ curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/companies/
_mapping/company' -d '
{
 "properties": {
 "id": {
 "type": "keyword"
 }
 }
}
'

$ curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/_bulk?pretty'
-d '
{ "index" : { "_index" : "articles", "_type" : "article", "_id" : "1" } }
{ "title" : "The NoSQL database glut", "mentions" : ["1", "2"] }
{ "index" : { "_index" : "articles", "_type" : "article", "_id" : "2" } }
{ "title" : "Graph Databases Seen Connecting the Dots", "mentions" : [] }
{ "index" : { "_index" : "articles", "_type" : "article", "_id" : "3" } }
{ "title" : "How to determine which NoSQL DBMS best fits your needs", "mentions" :
["2", "4"] }
{ "index" : { "_index" : "articles", "_type" : "article", "_id" : "4" } }
{ "title" : "MapR ships Apache Drill", "mentions" : ["4"] }

{ "index" : { "_index" : "companies", "_type" : "company", "_id" : "1" } }

Siren Federate User Guide

7

{ "id": "1", "name" : "Elastic" }
{ "index" : { "_index" : "companies", "_type" : "company", "_id" : "2" } }
{ "id": "2", "name" : "Orient Technologies" }
{ "index" : { "_index" : "companies", "_type" : "company", "_id" : "3" } }
{ "id": "3", "name" : "Cloudera" }
{ "index" : { "_index" : "companies", "_type" : "company", "_id" : "4" } }
{ "id": "4", "name" : "MapR" }
'

{
 "took" : 8,
 "errors" : false,
 "items" : [{
 "index" : {
 "_index" : "articles",
 "_type" : "article",
 "_id" : "1",
 "_version" : 3,
 "status" : 200
 }
 },
 ...
}

Relational Querying of the Data
We will now show you how to execute a relational query across the two indices. For example, we would like to
retrieve all the articles that mention companies whose name matches orient. This relational query can be
decomposed in two search queries: the first one to find all the companies whose name matches orient, and
a second query to filter out all articles that do not mention a company from the first result set. The Siren Feder-
ate plugin introduces a new Elasticsearch’s filter, named join, that enables you to define such a query plan
and a new search API _search that enables you to execute this query plan. Below is the command to run the
relational query:

$ cur -H 'Content-Type: application/json' 'http://localhost:9200/siren/articles/
_search?pretty' -d '{
 "query" : {
 "join" : { (1)
 "indices" : ["companies"], (2)
 "on" : ["mentions", "id"], (3)
 "request" : { (4)
 "query" : {
 "term" : {
 "name" : "orient"
 }
 }
 }
 }
 }
}'

1. The join query clause.
2. The source indices (that is companies).

Siren Federate User Guide

8

3. The clause specifying the paths for join keys in both source and target indices.
4. The search request that will be used to filter out companies.

The command should return you the following response with two search hits:

{
 "hits" : {
 "total" : 2,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "articles",
 "_type" : "article",
 "_id" : "1",
 "_score" : 1.0,
 "_source":{ "title" : "The NoSQL database glut", "mentions" : ["1", "2"] }
 }, {
 "_index" : "articles",
 "_type" : "article",
 "_id" : "3",
 "_score" : 1.0,
 "_source":{ "title" : "How to determine which NoSQL DBMS best fits your needs",
"mentions" : ["2", "4"] }
 }]
 }
}

You can also reverse the order of the join, and query for all the companies that are mentioned in articles whose
title matches nosql:

$ curl -H 'Content-Type: application/json' 'http://localhost:9200/siren/companies/
_search?pretty' -d '{
 "query" : {
 "join" : {
 "indices" : ["articles"],
 "on": ["id", "mentions"],
 "request" : {
 "query" : {
 "term" : {
 "title" : "nosql"
 }
 }
 }
 }
 }
}'

The command should return you the following response with three search hits:

{
 "hits" : {
 "total" : 3,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "companies",
 "_type" : "company",

Siren Federate User Guide

9

 "_id" : "4",
 "_score" : 1.0,
 "_source":{ "id": "4", "name" : "MapR" }
 }, {
 "_index" : "companies",
 "_type" : "company",
 "_id" : "1",
 "_score" : 1.0,
 "_source":{ "id": "1", "name" : "Elastic" }
 }, {
 "_index" : "companies",
 "_type" : "company",
 "_id" : "2",
 "_score" : 1.0,
 "_source":{ "id": "2", "name" : "Orient Technologies" }
 }]
 }
}

Siren Federate User Guide

10

Set up Federate

Configuring logger
It is recommended to change the default Elasticsearch’s log configuration logger.action.level from
debug to warn in order to avoid spurious log messages whenever a search request is canceled.

JDBC drivers
JDBC driver jars for remote datasources and their dependencies (if any) must be copied to the plugin directory
alongside other jars; once the jars have been copied, restart the node and ensure that the node starts correctly.

If the node fails to start because of a JAR Hell exception, remove the driver and its dependencies and restart
the node.

Impala JDBC connector
The following jars should not be copied as they are already present in the default Elasticsearch path:

• commons-logging

Siren Federate User Guide

11

Modules

Planner
The planner module is responsible in parsing a (multi) search request and generating a logical model. This logi-
cal model is then optimized by leveraging the rule-based Hep engine and statistical Volcano engine from
Apache Calcite. The outcome is a physical query plan, which is then executed. The physical query plan is a Di-
rected Acyclic Graph workflow composed of individual computing steps. The workflow is executed as a Job and
the individual computing steps are executed as`Tasks`. We can therefore map one (multi) search request to a
single job.

siren.plan-
ner.pool.job.size

Control the maximum number of concurrent jobs being executed per
node. Defaults to 1.

siren.plan-
ner.pool.job.queue_size

Control the size of the queue for pending jobs per node. Defaults to
100.

siren.plan-
ner.pool.tasks_per_job.
size

Control the maximum number of concurrent tasks being executed per
job. Defaults to 3.

siren.planner.volca-
no.enable

Enable or disable the Volcano statistical engine to select the most ap-
propriate join algorithms. Defaults to true.

siren.planner.volca-
no.join

Defines which distributed join algorithm to be selected when optimizing
a request. Valid values are either HASH_JOIN or MERGE_JOIN,
case-insensitive. Defaults to HASH_JOIN.

siren.planner.volca-
no.use_query

Use contextual queries when computing statistics. If false, computed
statistics are effectively "global" to the index. Defaults to false.

siren.planner.volca-
no.cache.enable

Enable or disable a caching layer over Elasticsearch requests sent dur-
ing query optimizations in order to gather statistics. Defaults to true.

siren.planner.volca-
no.cache.refresh_inter-
val

The minimum interval time for refreshing the cached response of a sta-
tistics-gathering request. The time unit is in minutes and defaults to 60
minutes.

siren.planner.volca-
no.cache.maximum_size

The maximum number of requests response that can be cached. De-
faults to 1000000.

Memory
The memory module is responsible in allocating and managing chunks of off-heap memory. The allocated mem-
ory is managed in a hierarchical model. The root allocator is managing the memory allocation on a node
level, and can have one or more job allocators. A job allocator is created for each job (that is, a Siren Feder-
ate search request) and is managing the memory allocation on a job level. A job can have one or more task
allocators. A task allocator is created for each task of a job and is managing the memory allocation on a task
level. Each allocator specifies a limit for how much off-heap memory it can use.

siren.memory.root.limit Limit in bytes for the root allocator. Defaults to 750MB.
siren.memory.job.limit Limit in bytes for the job allocator. Defaults to siren.memo-

ry.root.limit.

Siren Federate User Guide

12

siren.memory.task.limit Limit in bytes for the task allocator. Defaults to siren.memo-
ry.job.limit.

By default, the job limit is equal to the root limit, and the task limit is equal to the job limit. This enables a
simplified configuration for most common scenarios where only the root limit has to be configured. For more
advanced scenarios, e.g., with multiple concurrent users, one might want to tune the job and task limit to avoid
having a user executing a query that will consume all the available off-heap memory on the root level, leaving
no memory for the queries executed by other users.

Typically, you should never give more than half of the remaining OS memory to the siren root allocator, to leave
some memory for the OS cache and cater for Netty’s memory management overhead. For example, if Elastic-
search is configured with a 32GB heap on a machine with 64GB of ram, this leaves 32GB to the OS. The maxi-
mum limit that one could set for the root allocator should be 16GB.

IO
The IO module is responsible in encoding, decoding and shuffling data across the nodes in the cluster.

Tuple collector
This module introduces the concept of Tuple Collectors which are responsible in collecting tuples cre-
ated by a`SearchProject` or Join task and shuffling them across the shards or nodes in the cluster.

Tuples collected will be transferred in one or more packets. The size of a packet has an impact on the resour-
ces. Small packets will take less memory but will increase CPU times on the receiver side since it will have to
reconstruct a tuple collection from many small packets. Large packets will reduce CPU usage on the receiver
side, but at the cost of higher memory usage on the collector side and longer network transfer latency. The size
of a packet can be configured with the following setting:

siren.io.tuple.collec-
tor.packet_size

The number of tuples in a packet. The packet size must be a power of 2.
Defaults to 2^20 tuples.

When using the Hash Join or Merge Join algorithm, the collector will use a hash partitioner strategy to create
small data partitions. Creating multiple small data partitions helps in parallelizing the join computation, as
each worker thread for the join task will be able to pick and join one partition independently of the others. Set-
ting the number of data partitions per node to 1 will cancel any parallelization. The number of data partitions
per node can be configured with the following setting:

siren.io.tuple.collec-
tor.hash.parti-
tions_per_node

The number of partitions per node. The number of partitions must be a
power of 2. Defaults to 32.

Thread pools
Siren Federate introduces new thread pools:

federate.planner For the query planner operations. Thread pool type is scaling.
federate.data For the data operations (create, upload, delete). Thread pool type is

scaling.

Siren Federate User Guide

13

federate.task.worker For task worker threads. Thread pool type is fixed_au-
to_queue_size with a size of max((# of available_pro-
cessors) - 1, 1), and initial queue_size of 1000.

federate.connec-
tor.query

For connector query operations. Thread pool type is fixed_au-
to_queue_size with a size of int((# of available_pro-
cessors * 3) / 2) + 1, and initial queue_size of 1000.

Connector
The Federate Connector module supports the following node configuration settings:

siren.connector.data-
sources.index

The index in which Federate will store datasource configurations.

siren.connec-
tor.query.max_re-
sult_rows

The maximum number of rows returned when executing a query on a
remote datasource. Defaults to 10.

Siren Federate User Guide

14

Search APIs

Siren Federate introduces two new search actions, /siren/[INDICES]/_search that replaces the /
[INDICES]/_search Elasticsearch’s action, and /siren/[INDICES]/_msearch that replaces
the /[INDICES]/_msearch Elasticsearch’s action. Both actions are extensions of the original Elastic-
search’s actions and therefore supports the same API. One must use these actions with the join query clause,
as the join query clause is not supported by the original Elasticsearch actions.

Search API
The search API allows you to execute a search query and get back search hits that match the query. The end-
point for it is /siren/[INDICES]/_search.

Multi search API
The multi search API allows you to execute several search requests within the same API. The endpoint for it is /
siren/[INDICES]/_msearch.

Search request
The syntax for the body of the search request is identical to the one supported by Elasticsearch’s search API,
with the additional support for the join query clause in the Query DSL.

Parameters
In addition to the parameters supported by Elasticsearch’s search API, Federate’s search API introduces the fol-
lowing additional parameters:

task_time-
out

A task timeout, bounding a task to be executed within the specified time value (in milliseconds) and returns with the
values accumulated up to that point when expired. Defaults to no timeout (-1).

debug To retrieve debug information from the query planner. Defaults to false.

Search response
The response returned by Federate’s search API is similar to the response returned by Elasticsearch’s search
API. It extends the response with a planner object which includes information about the query plan execu-
tion. If the task_timeout was activated, it will include the flag is_pruned to indicate that the search
results are pruned and probably incomplete. If the debug parameter was enabled, it will also include the infor-
mation and statistics about the query plan execution.

Cancelling a Request
A search or a multi search request can be canceled explicitly by a user through HTTP headers. In order to do so,
you need to pass an X-Opaque-Id header which is used to identify the request. The endpoint for canceling a
request is /_siren/job/<ID>/_cancel.

Usage
Let’s identity a search request with the ID my-request:

Siren Federate User Guide

15

$ curl -H "Content-Type: application/json" -H "X-Opaque-Id: my-request" 'http://
localhost:9200/siren/_search'

Then to cancel it, issue a request as follows:

$ curl -XPOST -H "Content-Type: application/json" 'localhost:9200/_siren/job/my-
request/_cancel'

If successful, the response will acknowledge the request and give a listing of the canceled tasks:

{
 "acknowledged" : true,
 "tasks" : [
 {
 "node" : "5ILUA44uSee-VxsBsNbsNA",
 "id" : 947,
 "type" : "transport",
 "action" : "indices:siren/plan",
 "description" : "federate query",
 "start_time_in_millis" : 1524815599457,
 "running_time_in_nanos" : 199131478,
 "cancellable" : true,
 "headers" : {
 "X-Opaque-Id" : "my-request"
 }
 }
]
}

Siren Federate User Guide

16

Query DSL

Join query
The join filter enables the filtering of one set of documents (the target) with another one (the source) based
on shared field values. It accepts the following parameters:

type The type of the join algorithm to use. Valid values are either BROADCAST_JOIN, HASH_JOIN
or MERGE_JOIN. If this parameter is not specified, the query planner will try to automatically
select the optimal one.

indi-
ces

The index names that will be joined with the source indices. Defaults to all indices.

indi-
ces

The index types that will be joined with the source indices. Defaults to all types.

on An array specifying the field paths for join keys in both source and target indices. Both fields must
have the same datatype with the parameter doc_values set to true. You should not join fields
based on the text datatype.

re-
quest

The search request that will be used to compute the set of documents on the source before per-
forming the join.

Example
In this example, we will join all the documents from index1 with the documents of index2 using the
HASH_JOIN algorithm. The query first filters documents from index2 and of type type with the query
{ "terms" : { "tag" : ["aaa"] } }. It then retrieves the ids of the documents from the field
id specified by the parameter on. The list of ids is then used as filter and applied on the field foreign_key
of the documents from index1.

GET /siren/index1/_search
{
 "join" : {
 "type": "HASH_JOIN",
 "indices" : ["index2"],
 "types" : ["type"],
 "on" : ["foreign_key", "id"],
 "request" : {
 "query" : {
 "terms" : {
 "tag" : ["aaa"]
 }
 }
 }
 }
}

Scoring capabilities
The join filter has not scoring support and will return a constant score.

Siren Federate User Guide

17

Compatibility with nested query
The join filter within a nested query is currently supported. The join key must specify the field path within
the scope of the nested object. For example, as shown below, the join key must be foreign_key and not
nested_obj.foreign_key.

GET /siren/index1/_search
{
 "nested" : {
 "path" : "nested_obj",
 "query" : {
 "join" : {
 "indices" : ["index2"],
 "types" : ["type"],
 "on" : ["foreign_key", "id"],
 "request" : {
 "query" : {
 "match_all" : {}
 }
 }
 }
 }
 }
}

A nested query within a join filter is also supported if and only if the join key does not refer to a field of the
nested object.

Siren Federate User Guide

18

Cluster APIs

The cluster APIs enables the retrieval of cluster and node level information, such as statistics about off-heap
memory allocation.

Nodes statistics
The cluster nodes stats API allows to retrieve one or more (or all) of the cluster nodes statistics.

GET /_siren/nodes/stats
GET /_siren/nodes/nodeId1,nodeId2/stats

The first command retrieves stats of all the nodes in the cluster. The second command selectively retrieves no-
des stats of only nodeId1 and nodeId2.

By default, all stats are returned. You can limit this by combining any of the following stats:

memory Memory allocation statistics.
plan-
ner

Statistics about the planner job and task pools.

Memory information
The memory flag can be set to retrieve information about the memory allocation:

GET /_siren/nodes/stats/memory

The response includes memory allocation statistics for each node as follows:

{
 "se6baEC9T4K7-14yuG2qgA": {
 "memory" : {
 "allocated_direct_memory_in_bytes" : 0,
 "allocated_root_memory_in_bytes": 0,
 "root_allocator_dump": "Allocator(ROOT) 0/0/3750232064/17179869184 (res/actual/
peak/limit)"
 }
 },
 "sKnVUBo9ShGzkl4GYih7BA": {
 "memory" : {
 "allocated_direct_memory_in_bytes" : 0,
 "allocated_root_memory_in_bytes": 0,
 "root_allocator_dump": "Allocator(ROOT) 0/0/0/17179869184 (res/actual/peak/
limit)"
 }
 }
}

allocated_direct_memo-
ry_in_bytes

The actual direct memory allocated by Netty in bytes.

Siren Federate User Guide

19

allocated_root_memo-
ry_in_bytes

The actual direct memory allocated by the root allocator in bytes.

allocator_dump Dump of the root allocator including the actual direct memory alloca-
ted, the peak and the limit.

Planner information
The planner flag can be set to retrieve information about the planner job and task pools:

GET /_siren/nodes/stats/planner

The response includes memory allocation statistics for each node as follows:

{
 "se6baEC9T4K7-14yuG2qgA": {
 "planner": {
 "thread_pool": {
 "job": {
 "permits": 1,
 "queue": 0,
 "active": 0,
 "largest": 1,
 "completed": 538
 },
 "task": {
 "permits": 3,
 "queue": 0,
 "active": 0,
 "largest": 3,
 "completed": 3955
 }
 }
 }
 },
 "sKnVUBo9ShGzkl4GYih7BA": {
 "planner": {
 "thread_pool": {
 "job": {
 "permits": 1,
 "queue": 0,
 "active": 0,
 "largest": 1,
 "completed": 537
 },
 "task": {
 "permits": 3,
 "queue": 0,
 "active": 0,
 "largest": 3,
 "completed": 3863
 }
 }
 }
 }
}

Siren Federate User Guide

20

Optimizer statistics cache
The cluster optimizer cache API allows to retrieve a snapshot of the query optimizer cache for a list of the clus-
ter nodes.

GET /_siren/cache
GET /_siren/nodeId1,nodeId2/cache
GET /_siren/cache/clear
GET /_siren/nodeId1,nodeId2/cache/clear

The first command retrieves the state of the optimizer cache for all the nodes in the cluster, while the second
only for the desired list of node IDs. The third command invalidates the optimizer cache on every node, while
the last command does so for only the selected nodes.

The response includes statistics about the cache use on each node:

{
 "aQAf0tIwRtq_n4mBr9SLTw": {
 "size": 92,
 "hit_count": 32,
 "miss_count": 92,
 "eviction_count": 42,
 "load_exception_count": 0,
 "load_success_count": 92,
 "total_load_time_in_millis": 68004
 }
}

size The estimated number of entries in the cache.
hit_count The number of cache hits.
miss_count The number of cache misses.
eviction_count The number of evicted entries.
load_exception_count The number of times a request failed to execute as its response was to

be put in the cache.
load_success_count The number of times a request was executed successfully as its re-

sponse was to be put in the cache.
total_load_time_in_mil-
lis

The time spent in milliseconds to load request responses into the cache.

Siren Federate User Guide

21

Connecting to JDBC datasources

The Siren Federate plugin provides the capability to query data in remote datasources through the Elasticsearch
API by mapping tables to virtual indices.

The plugin stores its configuration in two Elasticsearch indices:

• .siren-federate-datasources: used to store the JDBC configuration parameters of remote da-
tasources.

• .siren-federate-indices: used to store the configuration parameters of virtual indices.

You should restrict access to these indices to the Federate user.

Datasources and virtual indices can be managed using the REST API or the user interface available in Siren
Investigate.

These indices are created automatically when required.

Settings
To send queries to virtual indices the Elasticsearch cluster must contain at least one node enabled to issue quer-
ies over JDBC. You should use a coordinating only node for this role, although this is not a requirement for test-
ing purposes.

JDBC node settings
To enable JDBC on a node where the Siren Federate plugin is installed, add the following setting to elastic-
search.yml:

node.attr.connector.jdbc: true

Then, create a folder named jdbc-drivers inside the configuration folder of the node (for example elas-
ticsearch/config or /etc/elasticsearch).

Finally, copy the JDBC driver for your remote datasource and its dependencies to the jdbc-drivers directo-
ry created above and restart the node; see the JDBC driver installation and compatibility section for a list of
compatible drivers and dependencies.

Common configuration settings

Encryption
JDBC passwords are encrypted by default using a predefined 128 bit AES key; before creating datasources, it is
advised to generate a custom key by running the keygen.sh script included in the siren-federate
plugin directory as follows:

bash plugins/siren-federate/tools/keygen.sh -s 128

The command will output a random base64 key; it is also possible to generate keys longer than 128 bit if your
JVM supports it.

Siren Federate User Guide

22

To use the custom key, the following parameters must be set in`elasticsearch.yml` on master nodes and on all
the JDBC nodes:

• siren.connector.encryption.enabled: true by default, can be set to false to switch off
JDBC password encryption.

• siren.connector.encryption.secret_key: A base64 encoded AES key used to encrypt
JDBC passwords.

Example elasticsearch.yml settings for a master node with a custom encryption key:

siren.connector.encryption.secret_key: "1zxtIE6/EkAKap+5OsPWRw=="

Example elasticsearch.yml settings for a JDBC node with a custom encryption key:

siren.connector.encryption.secret_key: "1zxtIE6/EkAKap+5OsPWRw=="
node.attr.connector.jdbc: true

Restart the nodes after changing the configuration to apply the settings.

Cluster wide settings
The following parameters can be set in elasticsearch.yml on JDBC nodes or by using the Elasticsearch
cluster update settings API:

• siren.connector.siren.timeout.connection: The maximum amount of seconds to wait
when establishing or acquiring a JDBC connection (30 by default).

• siren.connector.timeout.query: The maximum execution time for JDBC queries, in seconds
(30 by default).

• siren.connector.enable_union_aggregations: true by default. Set to false to switch
off the use of unions in nested aggregations.

• siren.connector.query.max_result_rows: The maximum number of rows that will be re-
trieved from a resultset when performing a join across datasources. Defaults to 50000.

• siren.connector.query.max_bucket_queries: The maximum number of JDBC queries
that will be generated to compute aggregation buckets. Defaults to 500.

Additional node settings
The following settings can be used to tune query processing on JDBC enabled nodes:

• siren.connector.pool.size: the number of threads that will be allocated to process the execu-
tion of queries to remote datasources; by default it is set to int((number of available_pro-
cessors * 3) / 2) + 1.

• siren.connector.pool.queue: the maximum number of requests that should be queued if all
the threads are busy. Defaults to 40.

Authentication

The Federate server role
If your cluster is protected by Search Guard or Elastic X-Pack, it is required to define a role with access to the
Federate indices and internal operations and to create a user with this role.

Siren Federate User Guide

23

For interoperability with these plugins, whenever a virtual index is created, the Federate plugin creates a con-
crete Elasticsearch index with the same name as the virtual index; when starting up, the Federate plugin will
check for missing concrete indices and will attempt to create them automatically.

Sample Search Guard role definition:

federateserver:
 cluster:
 - "indices:admin/aliases"
 indices:
 ?siren-federate-datasources:
 '*':
 - ALL
 ?siren-federate-indices:
 '*':
 - ALL
 ?siren-federate-target:
 '*':
 - ALL

Sample X-Pack role definition:

{
 "cluster": [
 "monitor",
 "cluster:admin/siren/connector"
],
 "indices" : [
 {
 "names" : ["*"],
 "privileges" : ["create_index", "indices:data/read/get", "indices:admin/siren/
connector"]
 },
 {
 "names" : [".siren-federate-*"],
 "privileges" : ["all", "indices:admin/siren/connector"]
 }
]
}

Then create a user with that role for example, a user called federateserver.

Example elasticsearch.yml settings for a master node in a cluster with authentication and federa-
teserver user:

siren.connector.username: federateserver
siren.connector.password: password
siren.connector.encryption.secret_key: "1zxtIE6/EkAKap+5OsPWRw=="

Example elasticsearch.yml settings for a JDBC node in a cluster with authentication and federate-
server user:

siren.connector.username: federateserver
siren.connector.password: password

Siren Federate User Guide

24

siren.connector.encryption.secret_key: "1zxtIE6/EkAKap+5OsPWRw=="
node.attr.connector.jdbc: true

Restart the nodes after setting the appropriate configuration parameters.

Administrative role
To manage datasources and virtual indices, it is required to grant the cluster:admin/siren/connec-
tor/* permissions at the cluster level.

In addition, the user must have the indices:admin/siren/connector/* and indices:data/
siren/connector/* permissions on all the index names that he’s allowed to define, in addition to create,
write, read and search permissions.

Write permissions are required because when a virtual index is defined the plugin will create a concrete Elastic-
search index with the same name for interoperability with authentication plugins, unless such an index already
exists.

Example Search Guard role allowed to manage virtual indices starting with db-:

sirenadmin:
 cluster:
 - SIREN_CLUSTER
 - cluster:admin/plugin/siren/license/put
 - cluster:admin/plugin/siren/license/get
 - cluster:admin/siren/connector/&#42;
 indices:
 'db-*':
 '*':
 - SIREN_READWRITE
 - indices:admin/create
 - indices:admin/siren/connector/*;
 '*':
 '*':
 - SIREN_COMPOSITE

Example X-Pack role allowed to manage virtual indices starting with db-:

{
 "cluster": [
 "cluster:admin/siren/connector"
 "cluster:admin/plugin/siren/license",
 "cluster:siren/internal",
 "manage"
],
 "indices" : [
 {
 "names" : ["*"],
 "privileges" : ["indices:siren/mplan"]
 },
 {
 "names" : ["db-*"],
 "privileges" : [
 "read",
 "create_index",

Siren Federate User Guide

25

 "view_index_metadata",
 "indices:data/siren",
 "indices:siren",
 "indices:admin/version/get",
 "indices:admin/get",
 "indices:admin/siren/connector"
]
 }
]
}

Search role
In order to search virtual indices, users must have the indices:data/siren/connector/* permis-
sions on these indices in addition to standard read and search permissions.

Example Search Guard role allowed to search virtual indices starting with db-:

sirenuser:
 cluster:
 - SIREN_CLUSTER
 indices:
 '*':
 '*':
 SIREN_COMPOSITE
 'db-*':
 '*':
 - SIREN_READONLY
 - indices:data/siren/connector*;

Example X-Pack role allowed to search virtual indices starting with db-:

{
 "cluster": [
 "cluster:admin/plugin/siren/license/get",
 "cluster:siren/internal"
],
 "indices" : [
 {
 "names" : ["*"],
 "privileges" : ["indices:siren/mplan"]
 },
 {
 "names" : ["db-*"],
 "privileges" : [
 "read",
 "view_index_metadata",
 "indices:data/siren",
 "indices:siren",
 "indices:admin/version/get",
 "indices:admin/get"
]
 }
]
}

Siren Federate User Guide

26

JDBC driver installation and compatibility
The JDBC driver for your remote datasource and its dependencies must be copied to the jdbc-drivers
subdirectory inside the configuration directory of JDBC nodes (e.g. elasticsearch/config/jdbc-
drivers).

It is neither required nor recommended to copy these drivers to nodes which are not enabled to execute quer-
ies.

Table 1. List of supported JDBC drivers

Name JDBC class Notes

PostgreSQL org.postgresql.Driver Download the latest JDBC 4.2 driver from
https://jdbc.postgresql.org/down-
load.html and copy the postgresql-
<version>.jar file to the jdbc-
drivers directory.

MySQL com.mysql.jdbc.Driver Download the latest GA release from
https://dev.mysql.com/downloads/
connector/j/, extract it, then copy
mysql-connector-java-<ver-
sion>.jar to the jdbc-drivers
plugin directory.

When writing the JDBC connection string,
set the useLegacyDatetimeCode
parameter to false to avoid issues when
converting timestamps.

Microsoft SQL Server 2014 or greater com.microsoft.sqlserver.jdbc.SQLServer-
Driver

Download sqljdbc_<ver-
sion>_enu.tar.gz from https://
docs.microsoft.com/en-us/sql/connect/
jdbc/download-microsoft-jdbc-driver-
for-sql-server?view=sql-serv-
er-2017#available-downloads-of-jdbc-
driver-for-sql-server, extract it, then copy
mssql-jdbc-<ver-
sion>.jre8.jar to the jdbc-
drivers directory.

Sybase ASE 15.7+ com.sybase.jdbc4.jdbc.SybDriver

OR

net.sourceforge.jtds.jdbc.Driver

To use the FreeTDS driver, download the
latest version from https://source-
forge.net/projects/jtds/files/, extract it,
then copy jtds-<version>.jar to
the jdbc-drivers directory.

To use the jConnect driver, copy jCon-
nect-<version>.jar from your
ASE directory to the jdbc-drivers di-
rectory.

Oracle 12c+ oracle.jdbc.OracleDriver Download the latest ojdbc8.jar from
http://www.oracle.com/technetwork/
database/features/jdbc/jdbc-
ucp-122-3110062.html and copy it to the
jdbc-drivers plugin directory.

Presto com.facebook.presto.jdbc.PrestoDriver Download the latest JDBC driver from
https://prestodb.io/docs/current/
installation/jdbc.html and copy it to the
jdbc-drivers plugin directory.

Siren Federate User Guide

27

https://jdbc.postgresql.org/download.html
https://jdbc.postgresql.org/download.html
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-2017#available-downloads-of-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-2017#available-downloads-of-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-2017#available-downloads-of-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-2017#available-downloads-of-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-2017#available-downloads-of-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-2017#available-downloads-of-jdbc-driver-for-sql-server
https://sourceforge.net/projects/jtds/files/
https://sourceforge.net/projects/jtds/files/
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-ucp-122-3110062.html
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-ucp-122-3110062.html
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-ucp-122-3110062.html
https://prestodb.io/docs/current/installation/jdbc.html
https://prestodb.io/docs/current/installation/jdbc.html

Name JDBC class Notes

Spark SQL 2.2+ com.simba.spark.jdbc41.Driver The Magnitude JDBC driver for Spark can
be purchased at https://
www.simba.com/product/spark-driv-
ers-with-sql-connector/; once downloa-
ded, extract the bundle, then extract the
JDBC 4.1 archive and copy the following
jars to the jdbc-drivers plugin direc-
tory:

SparkJDBC41.jar

commons-codec-<version>.jar

hive_metastore.jar

hive_service.jar

libfb303-<version>.jar

libthrift-<version>.jar

ql.jar

TCLIServiceClient.jar

zookeeper-<version>.jar

In addition, copy your license file to the
jdbc-drivers plugin directory.

Dremio com.dremio.jdbc.Driver Download the jar at https://down-
load.siren.io/dremio-jdbc-driv-
er-1.4.4-201801230630490666-6d69d32.j
ar and copy it to the jdbc-drivers
plugin directory.

Impala com.cloudera.impala.jdbc41.Driver Download the latest JDBC bundle from
https://www.cloudera.com/down-
loads/connectors/impala/jdbc/
2-6-4.html, extract the bundle, then ex-
tract the JDBC 4.1 archive and copy the
following jars to the jdbc-drivers
plugin directory:

ImpalaJDBC41.jar

commons-codec-<version>.jar

hive_metastore.jar

hive_service.jar

libfb303-<version>.jar

libthrift-<version>.jar

ql.jar

TCLIServiceClient.jar

zookeeper-<version>.jar

Restart the JDBC node after copying the drivers.

Siren Federate User Guide

28

https://www.simba.com/product/spark-drivers-with-sql-connector/
https://www.simba.com/product/spark-drivers-with-sql-connector/
https://www.simba.com/product/spark-drivers-with-sql-connector/
https://download.siren.io/dremio-jdbc-driver-1.4.4-201801230630490666-6d69d32.jar
https://download.siren.io/dremio-jdbc-driver-1.4.4-201801230630490666-6d69d32.jar
https://download.siren.io/dremio-jdbc-driver-1.4.4-201801230630490666-6d69d32.jar
https://download.siren.io/dremio-jdbc-driver-1.4.4-201801230630490666-6d69d32.jar
https://www.cloudera.com/downloads/connectors/impala/jdbc/2-6-4.html
https://www.cloudera.com/downloads/connectors/impala/jdbc/2-6-4.html
https://www.cloudera.com/downloads/connectors/impala/jdbc/2-6-4.html

API

Datasource management
The endpoint for datasource management is at /_siren/connector/datasources.

Datasource creation and modification
A datasource with a specific id can be updated by issuing a PUT request as follows:

PUT /_siren/connector/datasource/<id>
{
 "jdbc": {
 "username": "username",
 "password": "password",
 "driver": "com.db.Driver",
 "url": "jdbc:db://localhost:5432/default"
 }
}

Body parameters:

• jdbc: The JDBC configuration of the datasource.

JDBC configuration parameters:

• driver: The class name of the JDBC driver.
• url: the JDBC URL of the datasource.
• username (optional): The username that will be passed to the JDBC driver when getting a connection.
• password (optional): The password that will be passed to the JDBC driver when getting a connection.
• timezone: If date and timestamp fields are stored in a timezone other than UTC, specifying this param-

eter will instruct the plugin to convert dates and times to/from the specified timezone when performing
queries and retrieving results.

Datasource deletion
To delete a datasource, issue a DELETE request:

DELETE /_siren/connector/datasource/<id>

Datasource listing
To list the datasources configured in the system, issue a GET request:

GET /_siren/connector/datasource/_search

Datasource validation
To validate the connection to a datasource, issue a POST request:

POST /_siren/connector/datasource/<id>/_validate

Siren Federate User Guide

29

Virtual index management

Virtual index creation and modification
A virtual index with a specific id can be updated by issuing a PUT request:

PUT /_siren/connector/index/<id>
{
 "datasource": "ds",
 "catalog": "catalog",
 "schema": "schema",
 "resource": "table",
 "key": "id"
}

The ID of a virtual index must be a valid lowercase Elasticsearch index name; it is recommended to start virtual
indices with a common prefix to simplify handling of permissions.

Body parameters:

• datasource: the ID of an existing datasource.
• resource: the name of a table or view on the remote datasource.
• key: the name of a unique column; if a virtual index has no primary key it will be possible to perform

aggregations, however queries that expect a reproducible unique identifier will not be possible.
• catalog and schema: the catalog and schema containing the table specified in the resource pa-

rameter; these are usually required only if the connection does not specify a default catalog or schema.

Virtual index deletion
To delete a virtual index, issue a DELETE request:

DELETE /_siren/connector/index/<id>

When a virtual index is deleted, the corresponding concrete index is not deleted automatically.

Virtual index listing
To list the virtual indices configured in the system, issue a GET request:

GET /_siren/connector/index/_search

Operations on virtual indices
The plugin supports the following operations on virtual indices:

• get mapping
• get field capabilities
• search
• msearch
• get
• mget

Siren Federate User Guide

30

Search requests involving a mixture of virtual and normal Elasticsearch indices (for example, when using a wild-
card) are not supported and will be rejected; it is however possible to issue msearch requests containing re-
quests on normal Elasticsearch indices and virtual indices.

When creating a virtual index, the plugin will create an empty Elasticsearch index for interoperability with
Search Guard and X-Pack; if an Elasticsearch index with the same name as the virtual index already exists and it
is not empty, the virtual index creation will fail.

When deleting a virtual index, the corresponding Elasticsearch index will not be removed.

Type conversion
The plugin converts JDBC types to their closest Elasticsearch equivalent:

• String types are handled as keyword fields.
• Boolean types are handled as boolean fields.
• Date and timestamp are handled as date fields.
• Integer types are handled as long fields.
• Floating point types are handled as double fields.

Complex JDBC types which are not recognized by the plugin are skipped during query processing and resultset
fetching.

Supported search queries
The plugin supports the following queries:

• match_all
• term
• terms
• range
• exists
• prefix
• wildcard
• ids
• bool

At this time the plugin provides no support for datasource specific full text search functions, so all these queries
will work as if they were issued against`keyword` fields.

Supported aggregations
Currently the plugin provides support for the following aggregations:

Metric:

• Average
• Cardinality
• Max

Siren Federate User Guide

31

• Min
• Sum

Bucket:

• Date histogram
• Histogram
• Date range
• Range
• Terms
• Filters

Only terms aggregations can be nested inside a parent bucket aggregation.

Known Limitations

• Cross backend join currently supports only integer keys.
• Cross backend support has very different scalability according to the direction of the Join, a join which

involves sending IDs to a remote system will be possibly hundreds of times less scalable (for example, thou-
sands compared to millions) to one where the keys are fetched from a remote system.

• Only terms aggregations can be nested inside a parent bucket aggregation.
• The missing parameter in bucket aggregations is not supported.
• Scripted fields are not supported.
• When issuing queries containing string comparisons, the plugin does not force a specific collation, if a ta-

ble behind a virtual indices uses a case-insensitive collation, string comparisons will be case-insensitive.
• Wildcards on virtual index names are not supported by any API; a wildcard search will silently ignore virtu-

al indices.
• Currently cross cluster searches on virtual indices are not supported.

Troubleshooting

Cannot reconnect to datasource by hostname after DNS update
When the Java security manager is enabled, the JVM will cache name resolutions indefinitely; if the system
you’re connecting to uses round-robin DNS or the IP address of the system changes frequently, you will need to
modify the following Java Security Policy properties:

• networkaddress.cache.ttl: the number of seconds to cache a successful DNS lookup. Defaults
to -1 (forever).

• networkaddress.cache.negative.ttl: the number of seconds to cache an unsuccessful DNS
lookup. Defaults to 10, set to 0 to avoid caching.

Siren Federate User Guide

32

https://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html

License API

Federate includes a license manager service and a set of rest commands to register, verify and delete a Siren’s
license.

Without a valid license, Federate will log a message to notify that the current license is invalid at every request.

Usage
Let’s assume you have a Siren license named license.sig. You can upload and register this license in Elas-
ticsearch using the command:

$ curl -XPUT -H 'Content-Type: application/json' -T license.sig 'http://
localhost:9200/_siren/license'

acknowledged: true

You can then check the status of the license using the command:

$ curl -H 'Content-Type: application/json' 'http://localhost:9200/_siren/license'
{
 "license" : {
 "content" : {
 "valid-date" : "2016-05-16",
 "issue-date" : "2016-04-15",
 "max-nodes" : "12"
 },
 "isValid" : true
 }
}

To delete a license from Elasticsearch, you can use the command:

$ curl -XDELETE 'http://localhost:9200/_siren/license'
{"acknowledged":true}

Siren Federate User Guide

33

Set up Security

Connector
When using Shield or Search Guard, Federate will need to authenticate as a user with all the permissions on the
indices storing datasources and virtual index configuration. The credentials of this user can be specified through
the following node configuration settings:

• siren.connector.username: the username of the Federate connector user.
• siren.connector.password: the password of the Federate connector user.

Search Guard
The following snippet can be added to sg_roles.yml to define a federateserver role with all the re-
quired permissions on connector indices.

federateserver:
 indices:
 ?siren-federate-datasources:
 '*':
 - ALL

The following snippet can be added to sg_roles.yml to define a federateuser role with all the re-
quired permissions to manage datasources:

federateuser:
 cluster:
 - "cluster:admin/siren/connector/datasource/*"

Siren Federate User Guide

34

Performance considerations

Join types
Siren Federate includes different join strategies: “Broadcast Join”, “Hash Join” and “Merge Join”. Each one has
its pros and cons and the optimal performance will depend on the scenario. By default, the Siren Federate plan-
ner will try to automatically pick the best strategy, but it might be best in certain scenarios to pick manually one
of the strategies.

The Broadcast Join is best when filtering a large index with a small set of documents. The Hash Join and Merge
Join are fully distributed and are designed to handle large joins. They both scales horizontally (based on the
number of nodes) and vertically (based on the number of CPU cores). Currently, the Hash Join usually performs
better in many scenarios compared to the Merge Join.

Siren Federate provides two fully distributed join algorithms: the Hash Join and the Sort-Merge Join. Each one is
designed for leveraging multi-core architecture. This is achieved by creating many small data partitions during
the Project phase. Each node of the cluster will receive a number of partitions that are dependent of the num-
ber of CPU cores. Partitions are independent of each other and can be processed independently by a different
join worker thread. During the join phase, each worker thread will join tuples from one partition. The number of
join worker threads scales automatically with the number of CPU cores available.

The Hash Join is performed in two phases: build and probe. The build phase creates an in-memory hash table
of one of the relation in the partition. The probe phase then scans the second relation and probes the hash
table to find the matching tuples.

The Sort-Merge Join instead requires a sort phase of the two relations during the project phase. It then per-
forms a linear scan over the two sorted relations to find the matching tuples.

Compared to the Hash Join, the Sort-Merge Join does not require additional memory since it does not have to
build an in-memory hash table. However, it requires a sort operation to be executed during the project phase. It
is in fact trading CPU for memory.

Numeric or string attributes
Joining numeric attributes is more efficient than joining string attributes. If you are planning to join attributes of
type string, you should generate a murmur hash of the string value at indexing time into a new attribute,
and use this new attribute for the join. Such index-time data transformation can be easily done by using Logsta-
sh’s fingerprint plugin (https://www.elastic.co/guide/en/logstash/current/plugins-filters-fingerprint.html).

Tuple collector settings
Tuple Collectors are sending batches of tuples of fixed size. The size of a batch has an impact on the perform-
ance. Smaller batches will take less memory but will increase CPU times on the receiver side since it will have to
reconstruct a tuple collection from many small batches (especially for sorted tuple collection). By default, the
size of a batch of tuple is set to 1048576 tuples (which represents 8mb for a column of long datatype). The size
can be configured using the setting key siren.io.tuple.collector.batch_size with an integer
value representing the maximum number of tuples in a batch.

Siren Federate User Guide

35

Glossary

acyclic A graph without a cycle.

allocator A process that allocates resources.

application programming
interface (API)

A set of definitions that enable one piece of software to communicate with an-
other.

authenticator A process that performs authentication.

backend Software running on a server that is not directly accessed by a user.

bitwise An operation that modifies the individual bits of binary numeral.

choropleth A map with areas shaded in proportion to a statistical variable. Also known as a
regionmap.

comention A pair of data items occurring together.

datasource A connection to a database.

decrypt To convert encrypted data to plain text.

deserialization Creating an object from structured data.

formatter A process that performs formatting.

geohash An alphanumeric string that encodes a geographic location.

geopoint A geographic location, typically expressed in latitude and longitude.

heatmap A graphical data display using colors to represent individual values.

heteroscedastic The property of a variable whose variability is unequal across the range of val-
ues predicted by a second variable.

hostname A domain name that can be translated into an IP address.

iframe A frame used to place one HTML document inside another.

jitter Deviation from standard distribution.

keystore A repository of security certificates. See truststore.

partitioner A process that performs partitioning.

Siren Federate User Guide

36

picosecond One thousandth of a nanosecond.

regionmap A map with areas shaded in proportion to a statistical variable. Also known as a
choropleth map.

rollup An index of preselected fields.

templated The property of having a preset format.

templating Applying a template. See templated.

tilemap A geographic map overlaid with circles keyed to data specified in buckets.

truststore A repository of certificates issued by Certificate Authorities. See keystore.

truthy A value that returns true when treated as a Boolean value.

unescaped Used to describe raw values that have not been encoded to avoid ambiguity.

validator A process that performs validation.

Siren Federate User Guide

37

	Siren Federate User Guide
	Table of Contents
	Siren Federate
	Federation of external databases
	Distributed joins between indices
	How does Siren Federate join compare with parent-child
	What data model does it operate on

	Architecture
	Distributed join workflow
	Query planning and optimization
	IO

	Getting started
	Prerequisites
	Installing the Siren Federate Plugin
	Starting Elasticsearch
	Loading Some Relational Data
	Relational Querying of the Data

	Set up Federate
	Configuring logger
	JDBC drivers
	Impala JDBC connector

	Modules
	Planner
	Memory
	IO
	Tuple collector

	Thread pools
	Connector

	Search APIs
	Search API
	Multi search API
	Search request
	Parameters

	Search response
	Cancelling a Request
	Usage

	Query DSL
	Join query
	Example
	Scoring capabilities
	Compatibility with nested query

	Cluster APIs
	Connecting to JDBC datasources
	Settings
	JDBC node settings
	Common configuration settings
	Encryption
	Cluster wide settings
	Additional node settings

	Authentication
	The Federate server role
	Administrative role
	Search role

	JDBC driver installation and compatibility

	API
	Datasource management
	Datasource creation and modification
	Datasource deletion
	Datasource listing
	Datasource validation

	Virtual index management
	Virtual index creation and modification
	Virtual index deletion
	Virtual index listing

	Operations on virtual indices
	Type conversion
	Supported search queries
	Supported aggregations

	Known Limitations
	Troubleshooting
	Cannot reconnect to datasource by hostname after DNS update

	License API
	Usage

	Set up Security
	Connector
	Search Guard

	Performance considerations
	Join types
	Numeric or string attributes
	Tuple collector settings

	Glossary

