
Siren Federate User Guide

Table of Contents
Introduction. 1

Architecture . 2

Getting Started. 4

Set Up Federate . 10

Federate Modules . 10

Search APIs . 14

Query DSL . 16

Cluster APIs . 18

Index APIs . 24

Connector APIs . 25

Sessions APIs . 43

License APIs . 44

Connecting to Remote Datasources . 45

Set Up Security . 55

Performance Considerations . 63

Introduction
The Siren Federate plugin extends Elasticsearch with (1) a federation layer to query external
databases with the Elasticsearch API and (2) distributed join capabilities across indices and external
databases.

Federation of External Databases

Siren Federate provides a module, called “Connector”, which transparently maps external database
systems to “Virtual Indices” in Elasticsearch. Requests to the Elasticsearch APIs, such as the Mapping
or Search APIs, are intercepted by the Connector module. These requests are translated to the
external database dialect and executed against the external database. This enables Siren Investigate
to create and display dashboards for data located in external databases as if they were
Elasticsearch’s indices.

Distributed Joins Between Indices

Siren Federate extends the Elasticsearch DSL with a join query clause which enables a user to
execute a join between indices (being virtual or not). The join capabilities are implemented on top
of a in-memory distributed computing layer which scales with the number of nodes available in the
cluster.

The current join capabilities is currently limited to a (left) semi-join between two set of documents
based on a common attribute, where the result only contains the attributes of one of the joined set
of documents. This join is used to filter one set of documents with a second document set. It is
equivalent to the EXISTS() operator in SQL. Joins on both numerical and textual fields are
supported, but the joined attributes must be of the same type. You can also freely combine and nest
multiple joins using boolean operators (conjunction, disjunction, negation) to create complex query
plans. It is fully integrated with the Elasticsearch API and is compatible with distributed
environments.

How Does Siren Federate Join Compare With Parent-Child

The Siren Federate join is similar in nature to the Parent-Child feature of Elasticsearch: they
perform a join at query-time. However, there are important differences between them:

• The parent document and all of its children must live on the same shard, which limits its
flexibility. The Siren Federate join removes this constraint and is therefore more flexible: it
allows to join documents across shards and across indices.

• Thanks to the data locality of the Parent-Child model, joins are faster and more scalable. The
Siren Federate join on the contrary needs to transfer data across the network to compute joins
across shards, limiting its scalability and performance.

There is no “one size fits all” solution to this problem, and you need to understand your
requirements to choose the proper solution. As a basic rule, if your data model and data
relationships are purely hierarchical (or can be mapped to a purely hierarchical model), then the
Parent-Child model might be more appropriate. If on the contrary you need to query both
directions of a data relationship, then the Siren Federate join might be more appropriate.

1

https://www.elastic.co/guide/en/elasticsearch/guide/current/parent-child.html

On Which Data Model It Operates

The most important requirement for executing a join is to have a common shared attribute
between two indices. For example, let’s take a simple relational data model composed of two tables,
Articles and Companies, and of one junction table ArticlesMentionCompanies to encode the many-to-
many relationships between them.

This model can be mapped to two Elasticsearch indices, Articles and Companies. An article
document will have a multi-valued field mentions with the unique identifiers of the companies
mentioned in the article. In other words, the field mentions is a foreign key in the Articles table that
refers to the primary key of the Companies table.

It should be straightforward for someone to write an SQL statement to flatten and map
relationships into a single multi-valued field. We can see that, compared to a traditional database
model where a junction table is necessary, the model is simplified by leveraging multi-valued fields.

Architecture
Siren Federate is designed around the following core requirements:

• Low latency, real time interactive response – Siren Federate is designed to power ad hoc
interactive, read only queries such as those sent from Siren Investigate.

• Implementation of a fully featured relational algebra, capable of being extended for advanced
join conditions, operations and statistical optimizations.

• Flexible in-memory distributed computational framework.

• Horizontal scaling of fully distributed operations, leveraging all the available nodes in the
cluster.

• Federated – capable of working on data that is not inside the cluster, for example via JDBC
connections.

Siren Federate is based on the following high level architecture concepts:

• A coordinator node which is in charge of the query parsing, query planning and query
execution. We are leveraging the Apache Calcite engine to create a logical plan of the query,
optimise the logical plan and execute a physical plan.

• A set of worker processes that are in charge of executing the physical operations. Depending on
the type of physical operation, a worker process is spawned on a per node or per shard basis.

• An in-memory distributed file system that is used by the worker nodes to exchange data, with a
compact columnar data representation optimized for analytical data processing, zero copy and
zero data serialisation.

Distributed Join Workflow

When sending a (multi) search request with one or more nested joins, the node receiving the
request will become the “Coordinator”. The coordinator node is in charge of controlling and
executing a “Job” across the available nodes in the cluster. A job represents the full workflow of the
execution of a (multi) search request. A job is composed of one or more “Tasks”. A task represent a

2

single type of operations, such as a Search/Project or Join, that is executed by a “Worker” on a node.
A worker is a thread that will perform a task and report the outcome of the task to the coordinator.

For example, the following search request joining the index companies with articles:

GET /_siren/companies/search
{
 "query" : {
 "join" : {
 "type": "HASH_JOIN",
 "indices" : ["articles"],
 "on": ["id", "mentions"],
 "request" : {
 "query" : {
 "match_all": {}
 }
 }
 }
 }
}

will produce the following workflow:

The coordinator will execute a Search/Project task on every shard of the companies and articles
indices. These tasks will first execute a search query to compute the matching documents, then
scan the id and mentions fields of the matching documents and shuffle them to all the nodes of the
cluster. Once these tasks are completed, the coordinator will execute a Hash Join task on every node
of the cluster. The Hash Join task will join the two streams of data that were sent by the two
previous Search/Project tasks to compute a set of document ids for the companies index. These
documents ids will be transferred back to their respective shards and used to filter the companies
index.

This particular workflow enables Federate to push all the filtering predicates (e.g., terms, range,
boolean queries) down to Elasticsearch, leveraging the indices for fast computation. The Join task is
currently limited to compute the intersection of two different set of documents based on a join
condition. This reduces the amount of data allocated in memory, the amount of data transferred

3

across the network, and the workload performed by a task.

Query Planning & Optimisation

The coordinator node is leveraging Apache Calcite for planning the job execution. A search request
is first parsed into an abstract syntax tree before being transformed into a logical relational plan. A
set of rules will then be applied to optimise the logical plan. We leverage both the Hep and Volcano
engine to optimise the logical plan using heuristic and statistical information. The logical plan is
then transformed into a physical plan before being executed.

The physical plan represents a tree of tasks to be executed. The coordinator will try to execute tasks
concurrently when possible. In the previous example, the two Search/Project tasks are executed
concurrently, and the Hash Join task is executed only after the completion of the two Search/Project
tasks.

When handling a multi search request, each request will be planned separately, each one
producing a physical plan. However, before the execution of the physical plans, the planner will
combine all the physical plans into a single one, by mapping identical operations to one single task.
We can see that as a step to fold multiple trees of tasks into a single directed graph model, where
overlapping operations across trees will become one single vertex in the graph. This is useful to
reuse computation across multiple requests.

IO

The shuffling and transfer of data produced by a task is handled by a Collector. A collector will
collect data, serialize it into a compact columnar data representation, and transfer it in the form of
binary packets. Different collector strategies are implemented that are adapted to different tasks.
For example, in case of a Hash Join, a Search/Project task will use a collector with a hash
partitioning strategy to create small data partitions and shuffle these partitions uniformly across
the cluster.

On the receiver side, when a packet is received, it is stored as is (without deserialization) in an in-
memory data store. Tasks, such as the Join task, will directly work on top of these binary data
packets in order to avoid unnecessary data copy and deserialization.

The binary data packets are created, stored and manipulated off-heap. This helps to reduce
unnecessary loads on the JVM and Garbage Collection when dealing with a large amount of data.
We are leveraging the Apache Arrow project for the allocation and management of off-heap byte
arrays.

Getting Started
In this short guide, you will learn how you can quickly install the Siren Federate plugin in
Elasticsearch, load two collections of documents inter-connected by a common attribute, and
execute a relational query across the two collections within the Elasticsearch environment.

4

Prerequisites

This guide requires that you have downloaded and installed the Elasticsearch 6.8.13 distribution on
your computer. If you do not have an Elasticsearch distribution, you can run the following
commands:

$ wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.8.13.zip
$ unzip elasticsearch-6.8.13.zip
$ cd elasticsearch-6.8.13

Installing the Siren Federate Plugin

Before starting Elasticsearch, you have to install the Siren Federate plugin. Assuming that you are
in your Elasticsearch installation directory, you can run the following command:

$./bin/elasticsearch-plugin install file:///PATH-TO-SIREN-FEDERATE-PLUGIN/siren-
federate-6.8.13-10.3.8-plugin.zip
-> Downloading file:///PATH-TO-SIREN-FEDERATE-PLUGIN/siren-federate-6.8.13-10.3.8-
plugin.zip
[===] 100%
@@@
@ WARNING: plugin requires additional permissions @
@@@
* java.io.FilePermission cloudera.properties read
* java.io.FilePermission simba.properties read
* java.lang.RuntimePermission accessClassInPackage.sun.misc
* java.lang.RuntimePermission accessClassInPackage.sun.misc.*
* java.lang.RuntimePermission accessClassInPackage.sun.security.provider
* java.lang.RuntimePermission accessDeclaredMembers
* java.lang.RuntimePermission createClassLoader
* java.lang.RuntimePermission getClassLoader
...
See http://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html
for descriptions of what these permissions allow and the associated risks.

Continue with installation? [y/N]y
-> Installed siren-federate

In case you want to remove the plugin, you can run the following command:

$ bin/elasticsearch-plugin remove siren-federate

-> Removing siren-federate...
Removed siren-federate

5

https://www.elastic.co/downloads/elasticsearch

Starting Elasticsearch

To launch Elasticsearch, run the following command:

$./bin/elasticsearch

In the output, you should see a line like the following which indicates that the Siren Federate plugin
is installed and running:

[2017-04-11T10:42:02,209][INFO][o.e.p.PluginsService] [etZuTTn] loaded plugin
[siren-federate]

Loading Some Relational Data

We will use a simple synthetic dataset for the purpose of this demo. The dataset consists of two
collections of documents: Articles and Companies. An article is connected to a company with the
attribute mentions. Articles will be loaded into the articles index and companies in the companies
index. To load the dataset, run the following command:

$ curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/articles'
$ curl -H 'Content-Type: application/json' -XPUT
'http://localhost:9200/articles/_mapping/article' -d '
{
 "properties": {
 "mentions": {
 "type": "keyword"
 }
 }
}
'
$ curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/companies'
$ curl -H 'Content-Type: application/json' -XPUT
'http://localhost:9200/companies/_mapping/company' -d '
{
 "properties": {
 "id": {
 "type": "keyword"
 }
 }
}
'

$ curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/_bulk?pretty'
-d '
{ "index" : { "_index" : "articles", "_type" : "article", "_id" : "1" } }
{ "title" : "The NoSQL database glut", "mentions" : ["1", "2"] }
{ "index" : { "_index" : "articles", "_type" : "article", "_id" : "2" } }
{ "title" : "Graph Databases Seen Connecting the Dots", "mentions" : [] }

6

{ "index" : { "_index" : "articles", "_type" : "article", "_id" : "3" } }
{ "title" : "How to determine which NoSQL DBMS best fits your needs", "mentions" :
["2", "4"] }
{ "index" : { "_index" : "articles", "_type" : "article", "_id" : "4" } }
{ "title" : "MapR ships Apache Drill", "mentions" : ["4"] }

{ "index" : { "_index" : "companies", "_type" : "company", "_id" : "1" } }
{ "id": "1", "name" : "Elastic" }
{ "index" : { "_index" : "companies", "_type" : "company", "_id" : "2" } }
{ "id": "2", "name" : "Orient Technologies" }
{ "index" : { "_index" : "companies", "_type" : "company", "_id" : "3" } }
{ "id": "3", "name" : "Cloudera" }
{ "index" : { "_index" : "companies", "_type" : "company", "_id" : "4" } }
{ "id": "4", "name" : "MapR" }
'

{
 "took" : 8,
 "errors" : false,
 "items" : [{
 "index" : {
 "_index" : "articles",
 "_type" : "article",
 "_id" : "1",
 "_version" : 3,
 "status" : 200
 }
 },
 ...
}

Relational Querying of the Data

We will now show you how to execute a relational query across the two indices. For example, we
would like to retrieve all the articles that mention companies whose name matches orient. This
relational query can be decomposed in two search queries: the first one to find all the companies
whose name matches orient, and a second query to filter out all articles that do not mention a
company from the first result set. The Siren Federate plugin introduces a new Elasticsearch’s filter,
named join, that allows to define such a query plan and a new search API siren/<index>/_search
that allows to execute this query plan. Below is the command to run the relational query:

7

$ curl -H 'Content-Type: application/json'
'http://localhost:9200/siren/articles/_search?pretty' -d '{
 "query" : {
 "join" : { ①
 "indices" : ["companies"], ②
 "on" : ["mentions", "id"], ③
 "request" : { ④
 "query" : {
 "term" : {
 "name" : "orient"
 }
 }
 }
 }
 }
}'

① The join query clause

② The source indices (i.e., companies)

③ The clause specifying the paths for join keys in both source and target indices

④ The search request that will be used to filter out companies

The command should return you the following response with two search hits:

{
 "hits" : {
 "total" : 2,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "articles",
 "_type" : "article",
 "_id" : "1",
 "_score" : 1.0,
 "_source":{ "title" : "The NoSQL database glut", "mentions" : ["1", "2"] }
 }, {
 "_index" : "articles",
 "_type" : "article",
 "_id" : "3",
 "_score" : 1.0,
 "_source":{ "title" : "How to determine which NoSQL DBMS best fits your needs",
"mentions" : ["2", "4"] }
 }]
 }
}

You can also reverse the order of the join, and query for all the companies that are mentioned in
articles whose title matches nosql:

8

$ curl -H 'Content-Type: application/json'
'http://localhost:9200/siren/companies/_search?pretty' -d '{
 "query" : {
 "join" : {
 "indices" : ["articles"],
 "on": ["id", "mentions"],
 "request" : {
 "query" : {
 "term" : {
 "title" : "nosql"
 }
 }
 }
 }
 }
}'

The command should return you the following response with three search hits:

{
 "hits" : {
 "total" : 3,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "companies",
 "_type" : "company",
 "_id" : "4",
 "_score" : 1.0,
 "_source":{ "id": "4", "name" : "MapR" }
 }, {
 "_index" : "companies",
 "_type" : "company",
 "_id" : "1",
 "_score" : 1.0,
 "_source":{ "id": "1", "name" : "Elastic" }
 }, {
 "_index" : "companies",
 "_type" : "company",
 "_id" : "2",
 "_score" : 1.0,
 "_source":{ "id": "2", "name" : "Orient Technologies" }
 }]
 }
}

9

Set Up Federate

Configuring Logger

It is recommended to change the default Elasticsearch’s log configuration logger.action.level from
debug to warn in order to avoid spurious log messages whenever a search request is cancelled.

Federate Modules

Planner

The planner module is responsible in parsing a (multi) search request and generating a logical
model. This logical model is then optimised by leveraging the rule-based Hep engine and statistical
Volcano engine from Apache Calcite. The outcome is a physical query plan, which is then executed.
The physical query plan is a Directed Acyclic Graph workflow composed of individual computing
steps. The workflow is executed as a Job and the individual computing steps are executed as Tasks.
We can therefore map one (multi) search request to a single job.

siren.planner.pool.job.size

Control the maximum number of concurrent jobs being executed per node. Defaults to 1.

siren.planner.pool.job.queue_size

Control the size of the queue for pending jobs per node. Defaults to 100.

siren.planner.pool.tasks_per_job.size

Control the maximum number of concurrent tasks being executed per job. Defaults to 3.

siren.planner.volcano.enable

Enable or disable the Volcano statistical engine to select the most appropriate join algorithms.
Defaults to true.

siren.planner.volcano.use_query

Use contextual queries when computing statistics. If false, computed statistics are effectively
"global" to the index. Defaults to false.

siren.planner.volcano.cache.enable

Enable or disable a caching layer over Elasticsearch requests sent during query optimizations in
order to gather statistics. Defaults to true.

siren.planner.volcano.cache.refresh_interval

The minimum interval time for refreshing the cached response of a statistics-gathering request.
The time unit is in minutes and defaults to 60 minutes.

siren.planner.volcano.cache.maximum_size

The maximum number of requests response that can be cached. Defaults to 1000000.

10

Memory

The memory module is responsible in allocating and managing chunks of off-heap memory. The
allocated memory is managed in a hierarchical model. The root allocator is managing the memory
allocation on a node level, and can have one or more job allocators. A job allocator is created for
each job (i.e., a Siren Federate search request) and is managing the memory allocation on a job
level. A job can have one or more task allocators. A task allocator is created for each task of a job
and is managing the memory allocation on a task level. Each allocator specifies a limit for how
much off-heap memory it can use.

siren.memory.root.limit

Limit in bytes for the root allocator. Defaults to 750MB.

siren.memory.job.limit

Limit in bytes for the job allocator. Defaults to siren.memory.root.limit.

siren.memory.task.limit

Limit in bytes for the task allocator. Defaults to siren.memory.job.limit.

By default, the job limit is equal to the root limit, and the task limit is equal to the job limit. This
enables a simplified configuration for most common scenarios where only the root limit has to be
configured. For more advanced scenarios, e.g., with multiple concurrent users, one might want to
tune the job and task limits to avoid having a user executing a query that will consume all the
available off-heap memory on the root level, leaving no memory for the queries executed by other
users.

As a rule of thumb, one should never give more than half of the remaining OS memory to the siren
root allocator, in order to leave some memory for the OS cache and cater for Netty’s memory
management overhead. For example, if Elasticsearch is configured with a 32GB heap on a machine
with 64GB of ram, this leaves 32GB to the OS. The maximum limit that one could set for the root
allocator should be 16GB.

IO

The IO module is responsible in encoding, decoding and shuffling data across the nodes in the
cluster.

Tuple Collector

This module introduces the concept of Tuple Collectors which are responsible in collecting tuples
created by a SearchProject or Join task and shuffling them across the shards or nodes in the cluster.

Tuples collected will be transferred in one or more packets. The size of a packet has an impact on
the resources. Small packets will take less memory but will increase cpu times on the receiver side
since it will have to reconstruct a tuple collection from many small packets. Large packets will
reduce cpu usage on the receiver side, but at the cost of higher memory usage on the collector side
and longer network transfer latency. The size of a packet can be configured with the following
setting:

11

siren.io.tuple.collector.packet_size

The number of tuples in a packet. The packet size must be a power of 2. Defaults to 2^20 tuples.

When using the Hash Join, the collector will use a hash partitioner strategy to create small data
partitions. Creating multiple small data partitions helps in parallelizing the join computation, as
each worker thread for the join task will be able to pick and join one partition independently of the
others. Setting the number of data partitions per node to 1 will cancel any parallelization. The
number of data partitions per node can be configured with the following setting:

siren.io.tuple.collector.hash.partitions_per_node

The number of partitions per node. The number of partitions must be a power of 2. Defaults to
32.

Thread Pools

Siren Federate introduces new thread pools:

federate.planner

For the query planner operations. Thread pool type is fixed_auto_queue_size with a size of 2 * #
of available_processors, and initial queue_size of 1000.

federate.data

For the data operations (create, upload, delete). Thread pool type is scaling.

federate.task.worker

For task worker threads. Thread pool type is fixed_auto_queue_size with a size of max((# of
available_processors) - 1, 1), and initial queue_size of 1000.

federate.connector.query

For connector query operations. Thread pool type is fixed_auto_queue_size with a size of int((#
of available_processors * 3) / 2) + 1, and an unlimited initial queue_size with -1.

federate.connector.jobs.management

For connector job management operations like starting and stopping ingestion jobs. Thread pool
type is scaling.

federate.connector.jobs

For job worker threads like ingestion jobs and related concurrent indexing bulk requests.
Thread pool type is fixed_auto_queue_size with a size of int((# of available_processors * 3) /
2) + 1, and an unlimited initial queue_size with -1.

federate.connector.internal

For connector internal cluster communications. Thread pool type is scaling.

Query Cache

Siren Federate extends the Elasticsearch’s query cache:

12

index.federate.queries.cache.enabled

Enable (default) or disable the Siren Federate query cache, used for caching join queries.

federate.indices.queries.cache.size

Controls the memory size for the filter cache, defaults to 10%.

federate.indices.queries.cache.count

Controls the maximum number of entries in the cache, defaults to 1000.

Connector

The Federate Connector module supports the following node configuration settings, which can be
set on JDBC-enabled nodes:

siren.connector.datasources.index

The index in which Federate will store datasource configurations.

siren.connector.query.max_result_rows

DEPRECATED (to be removed in 10.4) The maximum number of rows returned when
executing a query on a remote datasource. Defaults to the default value of
siren.connector.query.project_max_size.

siren.query.data_terms.max_terms_count

DEPRECATED (to be removed in 10.4) the maximum number of terms that will be used to
compute a join when the right table of the join is a datasource. Defaults to the default value of
siren.connector.query.project_max_size.

siren.connector.query.project_max_size

A setting that controls how much data flows between datasources or between a datasource and
the Elasticsearch cluster. This encapsulates both settings siren.query.data_terms.max_terms_count
and siren.connector.query.max_result_rows into a single tunable knob in order to improve
clarity. Defaults to 50000 records transferred between systems consisting in the projected values,
e.g., joined values.

siren.connector.siren.timeout.connection

the maximum amount of seconds to wait when establishing or acquiring a JDBC connection (30
by default).

siren.connector.timeout.query

the maximum execution time for JDBC queries, in seconds (30 by default).

siren.connector.enable_union_aggregations

true by default, can be set to false to disable the use of unions in nested aggregations.

siren.connector.query.max_bucket_queries

the maximum number of JDBC queries that will be generated to compute aggregation buckets.
Defaults to 500.

13

siren.connector.pool.size

the number of threads that will be allocated to process the execution of queries to remote
datasources; by default it is set to int((number of available_processors * 3) / 2) + 1.

siren.connector.pool.queue

the maximum number of requests that should be queued if all the threads are busy. Defaults to
40.

siren.connector.jobs.pool.size

the number of threads that will be allocated to process the execution of ingestion jobs to remote
datasources; by default it is set to 100.

siren.connector.jobs.pool.queue

the maximum number of requests that should be queued if all the threads are busy. Defaults to
-1 (unlimited).

Search APIs
Siren Federate introduces two new search actions, /siren/[INDICES]/_search that replaces the
/[INDICES]/_search Elasticsearch’s action, and /siren/[INDICES]/_msearch that replaces the
/[INDICES]/_msearch Elasticsearch’s action. Both actions are extensions of the original
Elasticsearch’s actions and therefore supports the same API. One must use these actions with the
join query clause, as the join query clause is not supported by the original Elasticsearch actions.

Permissions: the APIs listed in this section need to have the cluster-level wildcard action
cluster:internal/federate/* granted by the security system, e.g., Search Guard.

Search API

The search API allows you to execute a search query and get back search hits that match the query.
The endpoint for it is /siren/[INDICES]/_search.

Permissions: this API needs the indices-level wildcard action
indices:data/read/federate/search* and indices:data/read/federate/planner/search to be
granted by the security system, e.g., Search Guard.

Scroll API

The scroll API allows to paginate search hits. Similarly to Elasticsearch, you pass a scroll parameter
to the search API to set the duration of a scroll. Then to go through each pages or clear a scroll, you
use the endpoint /siren/_search/scroll/<SCROLL_ID> instead of the /_search/scroll/<SCROLL_ID>
indicated in the Elasticsearch documentation.

14

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/search-request-scroll.html

Permissions: in addition to the permissions for the search API, this requires in addition the
indices-level actions indices:data/read/federate/scroll and
indices:data/read/federate/scroll/clear to be granted by the security system, e.g., Search
Guard.

Multi Search API

The multi search API allows to execute several search requests within the same API. The endpoint
for it is /siren/[INDICES]/_msearch.

Permissions: this API needs the indices-level wildcard action
indices:data/read/federate/search* and indices:data/read/federate/planner/msearch to be
granted by the security system, e.g., Search Guard.

Search Request

The syntax for the body of the search request is identical to the one supported by the Elasticsearch’s
search API, with the additional support for the join query clause in the Query DSL.

Parameters

In addition to the parameters supported by the Elasticsearch’s search API, the Federate’s search API
introduces the following additional parameters:

task_timeout A task timeout, bounding a task to be executed within the specified time value
(in milliseconds) and returns with the values accumulated up to that point
when expired. Defaults to no timeout (-1).

debug To retrieve debug information from the query planner. Defaults to false.

Search Response

The response returned by Federate’s search API is similar to the response returned by
Elasticsearch’s search API. It extends the response with a planner object which includes information
about the query plan execution. If the task_timeout was activated, it will include the flag is_pruned
to indicate that the search results are pruned and probably incomplete. If the debug parameter was
enabled, it will also include detailed information and statistics about the query plan execution.

Cancelling a Request

A search or a multi search request can be cancelled explicitely by a user. In order to do so, you need
to pass a X-Opaque-Id header which is used to identify the request. The endpoint for cancelling a
request is /_siren/job/<ID>/_cancel.

15

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/search-search.html

Permissions: this API needs the cluster-level action cluster:admin/federate/job/cancel to be
granted by the security system, e.g., Search Guard.

Usage

Let’s identity a search request with the ID my-request:

$ curl -H "Content-Type: application/json" -H "X-Opaque-Id: my-request"
'http://localhost:9200/siren/_search'

Then to cancel it, issue a request as follows:

$ curl -XPOST -H "Content-Type: application/json" 'localhost:9200/_siren/job/my-
request/_cancel'

If successful, the response will acknowledge the request and give a listing of the cancelled tasks:

{
 "acknowledged" : true,
 "tasks" : [
 {
 "node" : "5ILUA44uSee-VxsBsNbsNA",
 "id" : 947,
 "type" : "transport",
 "action" : "indices:siren/plan",
 "description" : "federate query",
 "start_time_in_millis" : 1524815599457,
 "running_time_in_nanos" : 199131478,
 "cancellable" : true,
 "headers" : {
 "X-Opaque-Id" : "my-request"
 }
 }
]
}

Query DSL

Join Query

The join filter enables the filtering of one set of documents (the target) with another one (the
source) based on shared field values. It accepts the following parameters:

16

type

The type of the join algorithm to use. Valid values are either BROADCAST_JOIN or HASH_JOIN. If this
parameter is not specified, the query planner will try to automatically select the optimal one.

indices

The index names that will be joined with the source indices. Defaults to all indices.

types

The index types that will be joined with the source indices. Defaults to all types.

on

An array specifying the field paths for join keys in both source and target indices. Both fields
must have the same datatype with the parameter doc_values set to true. It is not recommended
to join fields based on text datatype.

request

The search request that will be used to compute the set of documents on the source before
performing the join.

Example

In this example, we will join all the documents from index1 with the documents of index2 using the
HASH_JOIN algorithm. The query first filters documents from index2 and of type type with the query {
"terms" : { "tag" : ["aaa"] } }. It then retrieves the ids of the documents from the field id
specified by the parameter on. The list of ids is then used as filter and applied on the field
foreign_key of the documents from index1.

GET /siren/index1/_search
{
 "query" : {
 "join" : {
 "type": "HASH_JOIN",
 "indices" : ["index2"],
 "types" : ["type"],
 "on" : ["foreign_key", "id"],
 "request" : {
 "query" : {
 "terms" : {
 "tag" : ["aaa"]
 }
 }
 }
 }
 }
}

17

Scoring Capabilities

The join filter has not scoring support and will return a constant score.

Compatibility with Nested Query

The join filter within a nested query is currently supported. The join key must specify the field path
within the scope of the nested object. For example, as shown below, the join key must be
foreign_key and not nested_obj.foreign_key.

GET /siren/index1/_search
{
 "query" : {
 "nested" : {
 "path" : "nested_obj",
 "query" : {
 "join" : {
 "indices" : ["index2"],
 "types" : ["type"],
 "on" : ["foreign_key", "id"],
 "request" : {
 "query" : {
 "match_all" : {}
 }
 }
 }
 }
 }
 }
}

A nested query within a join filter is also supported if and only if the join key does not refer to a
field of the nested object.

Cluster APIs
The cluster APIs enables the retrieval of cluster and node level information, such as statistics about
off-heap memory allocation.

Nodes Statistics

The cluster nodes stats API allows to retrieve one or more (or all) of the cluster nodes statistics.

GET /_siren/nodes/stats
GET /_siren/nodes/nodeId1,nodeId2/stats

The first command retrieves stats of all the nodes in the cluster. The second command selectively
retrieves nodes stats of only nodeId1 and nodeId2

18

By default, all stats are returned. You can limit this by combining any of the following stats:

memory

Memory allocation statistics

planner

Statistics about the planner job and task pools.

Permissions: this API needs the cluster-level action cluster:monitor/federate/nodes/stats to
be granted by the security system, e.g., Search Guard.

Memory Information

The memory flag can be set to retrieve information about the memory allocation:

GET /_siren/nodes/stats/memory

The response includes memory allocation statistics for each node node as follows:

{
 "se6baEC9T4K7-14yuG2qgA": {
 "memory" : {
 "allocated_direct_memory_in_bytes" : 0,
 "allocated_root_memory_in_bytes": 0,
 "root_allocator_dump": "Allocator(ROOT) 0/0/3750232064/17179869184
(res/actual/peak/limit)"
 }
 },
 "sKnVUBo9ShGzkl4GYih7BA": {
 "memory" : {
 "allocated_direct_memory_in_bytes" : 0,
 "allocated_root_memory_in_bytes": 0,
 "root_allocator_dump": "Allocator(ROOT) 0/0/0/17179869184
(res/actual/peak/limit)"
 }
 }
}

allocated_direct_memory_in_bytes

The actual direct memory allocated by Netty in bytes

allocated_root_memory_in_bytes

The actual direct memory allocated by the root allocator in bytes

allocator_dump

Dump of the root allocator including the actual direct memory allocated, the peak and the limit.

19

Planner Information

The planner flag can be set to retrieve information about the planner job and task pools:

GET /_siren/nodes/stats/planner

The response includes memory allocation statistics for each node node as follows:

20

{
 "se6baEC9T4K7-14yuG2qgA": {
 "planner": {
 "thread_pool": {
 "job": {
 "permits": 1,
 "queue": 0,
 "active": 0,
 "largest": 1,
 "completed": 538
 },
 "task": {
 "permits": 3,
 "queue": 0,
 "active": 0,
 "largest": 3,
 "completed": 3955
 }
 }
 }
 },
 "sKnVUBo9ShGzkl4GYih7BA": {
 "planner": {
 "thread_pool": {
 "job": {
 "permits": 1,
 "queue": 0,
 "active": 0,
 "largest": 1,
 "completed": 537
 },
 "task": {
 "permits": 3,
 "queue": 0,
 "active": 0,
 "largest": 3,
 "completed": 3863
 }
 }
 }
 }
}

Query Cache Information

The query_cache flag can be set to retrieve information about the Siren’s query cache:

GET /_siren/nodes/stats/query_cache

21

The response includes statistics about the query_cache on each node:

{
 "_nodes": {
 "total": 2,
 "successful": 2,
 "failed": 0
 },
 "cluster_name": "my_cluster",
 "nodes": {
 "tEwWYjpbQzSYghVJVt87QQ": {
 "timestamp": 1545408407569,
 "name": "node_s0",
 "transport_address": "127.0.0.1:41639",
 "host": "127.0.0.1",
 "ip": "127.0.0.1:41639",
 "roles": [
 "master",
 "data",
 "ingest"
],
 "query_cache": {
 "memory_size_in_bytes": 0,
 "total_count": 0,
 "hit_count": 0,
 "miss_count": 0,
 "cache_size": 0,
 "cache_count": 0,
 "evictions": 0
 }
 },
 "Dw06QS6oRbS3fEMazn5llQ": {
 "timestamp": 1545408407569,
 "name": "node_s1",
 "transport_address": "127.0.0.1:42841",
 "host": "127.0.0.1",
 "ip": "127.0.0.1:42841",
 "roles": [
 "master",
 "data",
 "ingest"
],
 "query_cache": {
 "memory_size_in_bytes": 0,
 "total_count": 0,
 "hit_count": 0,
 "miss_count": 0,
 "cache_size": 0,
 "cache_count": 0,
 "evictions": 0

22

 }
 }
 }
}

memory_size_in_bytes

The size in bytes of the cache

total_count

The total number of lookups in the cache

hit_count

The number of successful lookups in the cache

miss_count

The number of lookups in the cache that failed to retrieve data

cache_size

The number of entries in the cache

cache_count

The number of entries that have been cached

evictions

The number of entries that have been evicted from the cache

Optimizer Statistics Cache

The cluster optimizer cache API allows to retrieve a snaphshot of the query optimizer cache for a
list of the cluster nodes.

GET /_siren/cache
GET /_siren/nodeId1,nodeId2/cache
GET /_siren/cache/clear
GET /_siren/nodeId1,nodeId2/cache/clear

The first command retrieves the state of the optimizer cache for all the nodes in the cluster, while
the second only for the desired list of node IDs. The third command invalidates the optimizer cache
on every node, while the last command does so for only the selected nodes.

The response includes statistics about the cache use on each node:

23

{
 "aQAf0tIwRtq_n4mBr9SLTw": {
 "size": 92,
 "hit_count": 32,
 "miss_count": 92,
 "eviction_count": 42,
 "load_exception_count": 0,
 "load_success_count": 92,
 "total_load_time_in_millis": 68004
 }
}

size

The estimated number of entries in the cache.

hit_count

The number of cache hits.

miss_count

The number of cache misses.

eviction_count

The number of evicted entries.

load_exception_count

The number of times a request failed to execute as its response was to be put in the cache.

load_success_count

The number of times a request was executed successfully as its response was to be put in the
cache.

total_load_time_in_millis

The time spent in milliseconds to load request responses into the cache.

Permissions: this API needs the cluster-level action
cluster:monitor/federate/planner/optimizer/stats/get to be granted by the security system,
e.g., Search Guard.

Index APIs
The index APIs are used to manage individual indices.

Query Cache

Siren’s query cache can be cleared together with that of Elasticsearch. For more details, please refer
to the Elasticsearch clear cache documentation.

24

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/indices-clearcache.html

POST /<index>/_cache/clear?query=true

The POST request clears the query cache for the specified index.

Connector APIs
In this section we present the APIs available to interact with datasources, virtual indices, ingestion
jobs.

Permissions: the APIs listed in this section need to have the cluster-level wildcard action
cluster:internal/federate/* granted by the security system, e.g., Search Guard.

Datasource API

In this section we present the API available to interact with datasources.

We currently supports two types of datasources:

• JDBC to connect to any datasource providing a JDBC driver;

• Elasticsearch to connect to an Elasticsearch remote clusters.

Datasource management

The endpoint for datasource management is at /_siren/connector/datasource.

Datasource creation and modification

A datasource with a specific id can be updated by issuing a PUT request. The body of the request
varies with the type of the datasource.

Permissions: the creation of a datasource needs the cluster-level action
cluster:admin/federate/connector/datasource/put granted by the security system, e.g., Search
Guard.

JDBC datasource

25

PUT /_siren/connector/datasource/<id>
{
 "jdbc": {
 "username": "username",
 "password": "password",
 "driver": "com.db.Driver",
 "url": "jdbc:db://localhost:5432/default",
 "properties": {
 "ssl": true
 }
 }
}

JDBC configuration parameters:

• driver: the class name of the JDBC driver.

• url: the JDBC url of the datasource.

• username: the username that will be passed to the JDBC driver when getting a connection
(optional).

• password: the password that will be passed to the JDBC driver when getting a connection
(optional).

• timezone: if date and timestamp fields are stored in a timezone other than UTC, specifying this
parameter will instruct the plugin to convert dates and times to/from the specified timezone
when performing queries and retrieving results.

• properties: a map of JDBC properties to be set when initializing a connection.

Elasticsearch datasource

PUT /_siren/connector/datasource/<id>
{
 "elastic": {
 "alias": "remotename"
 }
}

Elasticsearch configuration parameters:

• alias: the name of the configured cluster alias in the remote cluster configuration.

Datasource retrieval

The datasource configuration can be retrieved by issuing a GET request as follows:

GET /_siren/connector/datasource/<id>

26

Permissions: the retrieval of a datasource needs the cluster-level action
cluster:admin/federate/connector/datasource/get granted by the security system, e.g., Search
Guard.

Datasource deletion

To delete a datasource, issue a DELETE request as follows:

DELETE /_siren/connector/datasource/<id>

Permissions: the deletion of a datasource needs the cluster-level action
cluster:admin/federate/connector/datasource/delete granted by the security system, e.g.,
Search Guard.

Datasource listing

To list the datasources configured in the system, issue a GET request as follows:

GET /_siren/connector/datasource/_search

Permissions: the listing of datasources needs the cluster-level action
cluster:admin/federate/connector/datasource/search granted by the security system, e.g.,
Search Guard.

Datasource validation

To validate the connection to a datasource, issue a POST request as follows:

POST /_siren/connector/datasource/<id>/_validate

Permissions: the validation of a datasource needs the cluster-level action
cluster:admin/federate/connector/datasource/validate granted by the security system, e.g.,
Search Guard.

Datasource catalog metadata

To get the metadata related to a datasource connection catalog, issue a POST request as follows:

POST /_siren/connector/datasource/<id>/_metadata?catalog=<catalog>&schema=<schema>

27

The parameters are:

-catalog: The name of the catalog, -schema: The name of the schema.

The parameters catalog and schema are optionals: - If no catalog parameters is given, the API
returns the catalog list. - If no schema parameters is given, then the catalog parameter must be
provided. The API returns the schema list for the given catalog.

The result is a JSON document which contains the resource list for the given catalog and schema.

{
 "_id": "postgres",
 "found": true,
 "catalogs": [
 {
 "name": "connector",
 "schemas": [
 {
 "name": "public",
 "resources": [
 {
 "name": "emojis"
 },
 {
 "name": "Player"
 },
 {
 "name": "Matches"
 },
 {
 "name": "ingestion_testing"
 }
]
 }
]
 }
]
}

Permissions: to retrieve the metadata of a datasource, the cluster-level action
cluster:admin/federate/connector/datasource/metadata should be granted by the security
system, e.g., Search Guard.

Datasource field metadata

To get the field metadata related to a datasource connection resource (a table), issue a POST request
as follows:

28

POST /_siren/connector/datasource/<id>/_resource_metadata?catalog=<catalog>&schema=<s
chema>&resource=<resource>

The parameters are:

-catalog: The name of the catalog, -schema: The name of the schema, -resource: The name of the
resource (table).

The result is a JSON document which contains the columns list for the given catalog, schema and
resource. It contains also the name of the primary key if it exists.

{
 "_id": "postgres",
 "found": true,
 "columns": [
 {
 "name": "TEAM"
 },
 {
 "name": "ID"
 },
 {
 "name": "NAME"
 },
 {
 "name": "AGE"
 }
],
 "single_column_primary_keys": [
 {
 "name": "ID"
 }
]
}

Permissions: to retrieve the field metadata of a datasource, the cluster-level action
cluster:admin/federate/connector/datasource/field-metadata should be granted by the
security system, e.g., Search Guard.

Datasource query sample

This method runs a query and returns an array of results and an Elasticsearch type for each
column found.

29

POST _siren/connector/datasource/<id>/_sample
{
 "query": "SELECT * FROM events",
 "row_limit": 10,
 "max_text_size": 100
}

{
 "_id": "valid",
 "found": true,
 "types": {
 "location": "keyword",
 "id": "long",
 "occurred": "date",
 "value": "long"
 },
 "results": [
 {
 "id": 0,
 "occurred": 1422806400000,
 "value": 1,
 "location": "Manila"
 },
 {
 "id": 1,
 "occurred": 1422806460000,
 "value": 5,
 "location": "Los Angeles"
 },
 {
 "id": 2,
 "occurred": 1422806520000,
 "value": 10,
 "location": "Pompilio"
 }
]
}

Permissions: to sample a datasource, the cluster-level action
cluster:admin/federate/connector/datasource/sample should be granted by the security
system, e.g., Search Guard.

Datasource transform suggestions

To get a suggestion of a transform configuration that can be used by the ingestion, issue a POST
request as follows:

30

POST /_siren/connector/datasource/<id>/_transforms
{
 "query": "SELECT * FROM events"
}

It executes the query and returns a collection of transform operations based on the columns
returned by the query.

{
 "_id": "postgres",
 "found": true,
 "transforms": [
 {
 "input": [
 {
 "source": "id"
 }
],
 "output": "id"
 },
 {
 "input": [
 {
 "source": "occurred"
 }
],
 "output": "occurred"
 },
 {
 "input": [
 {
 "source": "value"
 }
],
 "output": "value"
 },
 {
 "input": [
 {
 "source": "location"
 }
],
 "output": "location"
 }
]
}

31

Datasource type list

To get a list of supported connectors, issue a GET request as follows:

GET /_siren/connector/datasource

{
 "MySQL": {
 "driverClassName": "com.mysql.jdbc.Driver",
 "defaultURL":
"jdbc:mysql://{{host}}:{{port}}{{databasename}}?useLegacyDatetimeCode=false&useCursorF
etch=true",
 "defaultPort": 3306,
 "defaultQuery": "SELECT 1 AS N",
 "disclaimer": "This is a sample connection string, see the <a target=\"_blank\"
href=\"https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference.html\">MySQL
Connector/J documentation for further information.",
 "virtualIndexSupported": true,
 "ingestionSupported": true
 },
 "PostgreSQL": {
 "driverClassName": "org.postgresql.Driver",
 "defaultURL": "jdbc:postgresql://{{host}}:{{port}}{{databasename}}",
 "defaultPort": 5432,
 "defaultQuery": "SELECT 1 AS N",
 "disclaimer": "This is a sample connection string, see the <a target=\"_blank\"
href=\"https://jdbc.postgresql.org/documentation/94/connect.html\">PostgreSQL JDBC
documentation for further information.",
 "virtualIndexSupported": true,
 "ingestionSupported": true
 }
}

Permissions: to suggest a transformation, the cluster-level action
cluster:admin/federate/connector/datasource/suggest/transform should be granted by the
security system, e.g., Search Guard.

Virtual index API

In this section we present the API available to interact with the virtual indices.

Virtual index management

Virtual index creation and modification

A virtual index with a specific id can be updated by issuing a PUT request as follows:

32

PUT /_siren/connector/index/<id>
{
 "datasource": "ds",
 "catalog": "catalog",
 "schema": "schema",
 "resource": "table",
 "key": "id",
 "search_fields": [
 {
 "function": "LIKE",
 "field": "NAME"
 }
]
}

The id of a virtual index must be a valid lowercase Elasticsearch index name; it is recommended to
start virtual indices with a common prefix to simplify handling of permissions.

Body parameters:

• datasource: the id of an existing datasource.

• resource: the name of a table or view on the remote datasource.

• key: the name of a unique column; if a virtual index has no primary key it will be possible to
perform aggregations, however queries that expect a reproducible unique identifier will not be
possible.

• catalog and schema: the catalog and schema containing the table specified in the resource
parameter; these are usually required only if the connection does not specify a default catalog
or schema.

• search_fields: An optional list of field names that will be searched using the LIKE operator
when processing queries. Currently only the LIKE function is supported.

Permissions: to create a virtual index, the indices-level action
indices:admin/federate/connector/put should be granted by the security system, e.g., Search
Guard.

Virtual index deletion

To delete a virtual index, issue a DELETE request as follows:

DELETE /_siren/connector/index/<id>

When a virtual index is deleted, the corresponding concrete index is not deleted automatically.

33

Permissions: to delete a virtual index, the indices-level action
indices:admin/federate/connector/delete should be granted by the security system, e.g.,
Search Guard.

Virtual index listing

To list the virtual indices configured in the system, issue a GET request as follows:

GET /_siren/connector/index/_search

Permissions: to list virtual indices, the indices-level action
indices:admin/federate/connector/search should be granted by the security system, e.g.,
Search Guard.

Ingestion API

Ingestion management

The endpoint for ingestion management is at /_siren/connector/ingestion.

Ingestion creation and modification

An ingestion with a specific id can be updated by issuing a PUT request as follows:

PUT _siren/connector/ingestion/<id>
{
 "ingest": {
 "datasource": "postgres",
 "query": "select * from events {{#max_primary_key}}WHERE
id>{{max_primary_key}}{{/max_primary_key}} limit 10000",
 "batch_size": 10,
 "schedule": "0 0 * * * ?",
 "enable_scheduler": true,
 "target": "events",
 "staging_prefix": "staging-index",
 "strategy": "REPLACE",
 "pk_field": "id",
 "mapping": {
 "properties": {
 "id": { "type": "long" },
 "value": { "type": "keyword" },
 "location": { "type": "text" },
 "geolocation": { "type": "geo_point" }
 }
 },
 "pipeline": {

34

 "processors": [
 {
 "set" : {
 "field": "foo",
 "value": "bar"
 }
 }
]
 },
 "transforms": [{
 "input": [{"source": "id"}],
 "output": "id",
 "mapping": {
 "type": "long"
 }
 },{
 "input": [
 {"source": "lat"},
 {"source": "lon"}
],
 "output": "geolocation",
 "transform": "geo_point",
 "mapping": {
 "type": "geo_point"
 }
 }],
 "ds_credentials": {
 "username": "user",
 "password": "pass"
 },
 "es_credentials": {
 "username": "user",
 "password": "pass"
 },
 "description": "description"
 }
}

Body parameters:

• ingest: the properties of the ingestion.

Ingest configuration parameters:

• datasource: the name of a datasource.

• query: the template query passed to the JDBC driver collecting the record to ingest.

• batch_size: An optional batch size (overriding the default global value).

• schedule: An optional schedule using the cron syntax.

• enable_schedule: enable or disable the scheduled execution.

35

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html

• target: A target Elasticsearch index name.

• staging_prefix: An optional prefix for the staging Elasticsearch index.

• strategy: An update strategy. It can be either INCREMENTAL or REPLACE.

• pk_field: A primary key field name.

• mapping: An Elasticsearch mapping definition.

• pipeline: An optional pipeline configuration.

• transforms: A sequence of transforms to map the fields declared by the query to the fields in the
Elasticsearch mapping definition.

• ds_credentials: An optional set of credentials used to connect to the database.

• es_credentials: The optional credentials that will be used to perform Elasticsearch requests
during jobs.

• description: An optional description.

Strategy:

There are two available ingestion strategies:

• INCREMENTAL: The index is created if it does not exists. The ingested records are inserted or
updated in place.

• REPLACE: The index name is an alias to a staging index. The ingested records are inserted on the
staging index. When the ingestion is done the alias is moved from the previous staging index to
the new one. If anything wrong happens the alias is untouched and point to the previous
staging index.

Ingestion query:

The query defined in the ingestion configuration is written in the datasource language. The query
can be written using mustache and the following variables are provided, if applicable, when
converting the query to a string:

• max_primary_key: the maximum value of the primary key in Elasticsearch.

• last_record_timestamp: the UTC timestamp at which the last record was successfully processed
by an ingestion job.

• last_record: an object with the scalar values in the last record that was successfully processed
by the ingestion job.

Mapping transform:

A mapping transform takes one or more fields from a datasource record as inputs and outputs a
field that can be indexed with a valid Elasticsearch type.

A mapping transform has the following properties:

• input: a sequence of inputs, where an input can be either the name of a field defined in the job
query or the name of a field in the target Elasticsearch mapping.

36

• transform: the name of a predefined function that takes as input the values of the fields specified
in the input parameter and the mapping properties of the target Elasticsearch field. The
function outputs the value to be indexed; if transform is not set, the system uses a generic cast
function to create the output.

• output: the name of the target Elasticsearch field.

Input:

The input structure must provide one of the following properties:

• source: the name of a field defined in the job query.

• target: the name of a field in the target Elasticsearch mapping.

Transforms (“predefined functions”):

• copy: a default cast transform that produces a scalar Elasticsearch value in a way analogous to
how the connector already translates JDBC types to Elasticsearch types. If the JDBC driver
reports array fields / struct fields correctly, they will be written as Elasticsearch arrays. Any
JDBC type that is not supported / not recognized causes an exception.

• geo_point: transform that produces a geo_point value from two numerical inputs, where the
first is the latitude and the second the longitude.

• array: an array transform that produces an array Elasticsearch value from a comma separated
string field in a record.

Credential parameters (for ElasticSearch or the JDBC database):

If the user does not have the permission to manage datasources in the cluster these credentials are
mandatory.

• username: the login to use to connect to the resource.

• password: the password to use to connect to the resource.

Ingestion retrieval

The ingestion properties can be retrieved by issuing a GET request as follows:

GET /_siren/connector/ingestion/<id>

Ingestion deletion

To delete an ingestion, issue a DELETE request as follows:

DELETE /_siren/connector/ingestion/<id>

Ingestion listing

To list the ingestions configured in the system, issue a GET request as follows:

37

GET _siren/connector/ingestion/_all?status=[false|true]&detailed=[false|true]

Note: GET _siren/connector/ingestion/_search API has been deprecated and is scheduled to be
removed in next major release.

If the optional status parameter is set to true, it also returns the last job status, and the last job log.

If the optional detailed parameter(true by default) is set to false, then mapping, pipeline,
transforms and removed_fields are not returned.

Ingestion validation

To validate the connection to an ingestion, issue a POST request as follows:

POST _siren/connector/ingestion/<id>/_validate

Run an ingestion job

To execute an ingestion job, issue a POST request as follows:

POST _siren/connector/ingestion/<id>/_run

The response returns the jobId that can be use to track the status of the running job:

{
 "_id": "postgres-events",
 "_version": 49,
 "found": true,
 "jobId": "postgres-events"
}

Job API

The job API provides methods for managing running job and retrieve status about previous
executions.

Job management

The endpoint for job management is at /_siren/connector/jobs.

Running jobs statuses

The status of all running jobs can be retrieved by issuing a GET request as follows:

GET _siren/connector/jobs/<type>

38

The possible type value is:

• ingestion: This type is related to the ingestion jobs.

Running job status

The status of a job can be retrieved by issuing a GET request as follows:

GET _siren/connector/jobs/<type>/<id>

This API provide the status of the current running job if there is any, or the status of the last
execution.

Body parameters:

• status: the status of the job.

Status parameters:

• id: the id of the job.

• is_running: a boolean value indicating if the job is running.

• is_aborting: an optional boolean value which indicates that the job is aborting.

• start_time: a timestamp with the starting time of the job.

• end_time: a timestamp with the ending time of the job.

• infos: textual information.

• error: an optional sequence of error messages.

• state: the current state of the job.

• count: the total number of processed records.

• last_id: the optional last known value of the primary key column.

Possible state values:

• running: the job is running.

• aborting: the job is aborting due to the user request.

• aborted: the job has been aborted.

• error: the job failed with an error.

• successful: the job was completed successfully.

JSON representation while a job is running:

39

{
 "_id": "postgres-events",
 "type": "ingestion",
 "found": true,
 "status": {
 "version": 1,
 "id": "postgres-events",
 "is_running": true,
 "start_time": 1538731228589,
 "infos": "The job is running.",
 "state": "running",
 "count": 3459,
 "last_id": "2289"
 }
}

JSON representation of a successfully completed job:

{
 "_id": "postgres-events",
 "type": "ingestion",
 "found": true,
 "status": {
 "version": 1,
 "id": "postgres-events",
 "is_running": false,
 "start_time": 1538733893554,
 "end_time": 1538733911829,
 "infos": "The job is done.",
 "state": "successful",
 "count": 10000,
 "last_id": "12219"
 }
}

JSON representation of a job who failed due to an error:

40

{
 "_id": "postgres-events",
 "type": "ingestion",
 "found": true,
 "status": {
 "version": 1,
 "id": "postgres-events",
 "is_running": false,
 "start_time": 1538730949766,
 "end_time": 1538730961293,
 "infos": "The job has failed.",
 "error": [
 "Could not execute datasource query [postgres].",
 "Failed to initialize pool: The connection attempt failed.",
 "The connection attempt failed.",
 "connect timed out"
],
 "state": "error",
 "count": 0
 }
}

Cancelling a running job

This API provides a method to stop a running job.

POST _siren/connector/jobs/ingestion/<id>/_abort

{
 "_id": "postgres-events",
 "type": "ingestion",
 "found": true,
 "status": {
 "version": 1,
 "id": "postgres-events",
 "is_running": false,
 "is_aborting": true,
 "start_time": 1538733800993,
 "end_time": 1538733805318,
 "infos": "The job has been aborted.",
 "state": "aborted",
 "count": 2220,
 "last_id": "2219"
 }
}

41

Searching on the job log

This API provides a method to retrieve the status of completed jobs. It is possible to pass parameters
to filter the results.

GET _siren/connector/jobs/_search

Possible filter parameters:

• start_time_from: jobs which start time is greater than or equal to the passed value.

• start_time_to: jobs which start time is lower than or equal to the passed value.

• type: a filter on the job type.

• state: the state of the job status. See the job status description to get a list of possible values.

• id: the id of the job.

Request and result example:

GET _siren/connector/jobs/_search?type=ingestion&id=postgresevents&start_time_to
=1539192173232

{
 "hits": {
 "total": 1,
 "hits": [
 {
 "_id": "postgresevents11e247fa-ccb1-11e8-ad75-c293294ec513",
 "_source": {
 "ingestion": {
 "version": 1,
 "id": "postgresevents",
 "is_running": false,
 "start_time": 1539192150699,
 "end_time": 1539192151612,
 "infos": "The job is done.",
 "state": "successful",
 "count": 0
 }
 }
 }
]
 }
}

42

Sessions APIs
The Sessions APIs enables the management of user sessions. Federate is tracking the number of
concurrent user sessions across the cluster. A user session must be specified for each search
request with the header X-Federate-Session-Id. A same session id can be reused across multiple
search requests.

Get Sessions

The Get Sessions API allows to retrieve the list of the current active sessions.

GET /_siren/sessions

The response includes the size of the session pool, the number of active sessions and the list of
active session ids:

{
 "size": 5,
 "active": 2,
 "active_sessions_ids" : [user_1, user_2]
}

Clear Sessions

Sessions are automatically removed when the session timeout since the last search request has
been exceeded. However, it is recommended to clear the session as soon as the session is not being
used anymore in order to free slots in the session pool:

DELETE /_siren/sessions/user_1

or

DELETE /_siren/sessions
{
 "session_id" : "user_1"
}

Multiple session IDs can be passed as a comma separated list of values

DELETE /_siren/sessions/user_1,user_2

or as an array:

43

DELETE /_siren/sessions
{
 "session_id" : [
 "user_1",
 "user_2"
]
}

License APIs
Federate includes a license manager service and a set of rest commands to register, verify and
delete a Siren’s license. By default, the Siren Community license is included.

Without a valid license, Federate will log a message to notify that the current license is invalid
whenever a search request is executed.

Permissions: the cluster-level actions cluster:admin/federate/license/* need to be granted by
the security system, e.g., Search Guard.

Put License

The Put License API allows to upload a license to the cluster:

PUT /_siren/license

Let’s assume you have a Siren license named license.sig. You can upload and register this license
in Elasticsearch using the command:

$ curl -XPUT -H 'Content-Type: application/json' -T license.sig
'http://localhost:9200/_siren/license'

acknowledged: true

Get License

The Get License API allows to retrieve and validate the license:

GET /_siren/license

The response includes the content of the license as well as a summary of the license validation. If
the validity check fails, a list of invalid parameters with a cause is provided:

44

{
 "license_content": {
 "description": "Siren Community License",
 "issue_date": "2019-01-29",
 "permissions": {
 "federate": {
 "max_concurrent_sessions": "1",
 "max_nodes": "1"
 },
 "investigate": {
 "max_dashboards": "12",
 "max_graph_nodes": "500",
 "max_virtual_indices": "5"
 }
 },
 "valid_date": "2020-01-29"
 },
 "license_validation": {
 "is_valid": false,
 "invalid_parameters": [
 {
 "parameter": "permissions.federate.max_nodes",
 "cause": "Too many nodes in the Federate cluster 2 > 1"
 },
 {
 "parameter": "permissions.federate.max_concurrent_sessions",
 "cause": "Too many concurrent user sessions in the Federate cluster 5 > 1"
 }
]
 }
}

Delete License

The Delete License API allows to delete a license from the cluster. Without license, the system will
fall back to the Siren Community license.

DELETE /_siren/license

Connecting to Remote Datasources
The Siren Federate plugin provides the capability to query data in remote datasources through the
Elasticsearch API by mapping tables to virtual indices.

The plugin stores its configuration in two Elasticsearch indices:

• .siren-federate-datasources: used to store the JDBC configuration parameters of remote

45

datasources.

• .siren-federate-indices: used to store the configuration parameters of virtual indices.

Other indices are also used for different features: - .siren-federate-target: used to store the target
of virtual index aliases. - .siren-federate-ingestions: used to store the ingestions configurations. -
.siren-federate-joblogs: used to store logs of ingestion jobs.

Datasources and virtual indices can be managed using the REST API or the user interface available
in Siren Investigate.

These indices are created automatically when required.

Connecting to JDBC datasources

Siren Federate provides the capability to query data from a remote JDBC databases.

Settings

In order to send queries to virtual indices the Elasticsearch cluster must contain at least one node
enabled to issue queries over JDBC; it is advised to use a coordinating only node for this role,
although this is not a requirement for testing purposes.

JDBC node settings

In order to enable JDBC on a node where the Siren Federate plugin is installed, add the following
setting to elasticsearch.yml:

node.attr.connector.jdbc: true

Then, create a directory named jdbc-drivers inside the configuration directory of the node (e.g.
elasticsearch/config or /etc/elasticsearch).

Finally, copy the JDBC driver for your remote datasource and its dependencies to the jdbc-drivers
directory created above and restart the node; see the JDBC driver installation and compatibility
section for a list of compatible drivers and dependencies.

Common configuration settings

Encryption

JDBC passwords are encrypted by default using a predefined 128 bit AES key; before creating
datasources, it is advised to generate a custom key by running the keygen.sh script included in the
siren-federate plugin directory as follows:

bash plugins/siren-federate/tools/keygen.sh -s 128

The command will output a random base64 key; it is also possible to generate keys longer than 128
bit if your JVM supports it.

46

To use the custom key, the following parameters must be set in elasticsearch.yml on master nodes
and on all the JDBC nodes:

• siren.connector.encryption.enabled: true by default, can be set to false to disable JDBC
password encryption.

• siren.connector.encryption.secret_key: a base64 encoded AES key used to encrypt JDBC
passwords.

Example elasticsearch.yml settings for a master node with a custom encryption key:

siren.connector.encryption.secret_key: "1zxtIE6/EkAKap+5OsPWRw=="

Example elasticsearch.yml settings for a JDBC node with a custom encryption key:

siren.connector.encryption.secret_key: "1zxtIE6/EkAKap+5OsPWRw=="
node.attr.connector.jdbc: true

Restart the nodes after changing the configuration to apply the settings.

JDBC driver installation and compatibility

The JDBC driver for your remote datasource and its dependencies must be copied to the jdbc-
drivers subdirectory inside the configuration directory of JDBC nodes (e.g.
elasticsearch/config/jdbc-drivers).

It is not required nor recommended to copy these drivers to nodes which are not enabled to
execute queries.

You may create a sub-directory within jdbc-drivers to store a driver and to provide a custom
security policy file for this driver. It is recommended to use this approach for drivers that come in
multiple jars. A custom security policy file enables the definition of driver-specific permissions. The
custom security policy file must be named security.policy and must be located inside the driver
sub-directory. The following variables can be used within the policy file:

• codebase.federate.common: Path to the directory storing the security.policy (defaults to jdbc-
drivers if the default drivers-security.policy file is used)

• codebase.federate.${jar_name): Path to a driver jar. Here, ${jar_name} refers to the filename of
the jar stored in the directory where the security.policy file is located (defaults to jars found in
jdbc-drivers if the default drivers-security.policy file is used). For Example:

grant codeBase "${codebase.federate.postgresql-42.2.5.jar}" {
 // Permissions for postgresql-42.2.5.jar
}

If a security.policy is placed in the main jdbc-drivers directory, then it overrides the default
drivers-security.policy

47

Restart the JDBC node after copying the drivers.

Table 1. List of supported JDBC drivers

Name JDBC class Notes

PostgreSQL org.postgresql.Driver Download the latest JDBC 4.2
driver from
https://jdbc.postgresql.org/
download.html and copy the
postgresql-<version>.jar file to
the jdbc-drivers directory.

MySQL com.mysql.jdbc.Driver Download the latest GA release
from https://dev.mysql.com/
downloads/connector/j/, extract
it, then copy mysql-connector-
java-<version>.jar to the jdbc-
drivers plugin directory.

When writing the JDBC
connection string, set the
useLegacyDatetimeCode
parameter to false to avoid
issues when converting
timestamps.

Microsoft SQL Server 2014 or
greater

com.microsoft.sqlserver.jdbc.SQ
LServerDriver

Download
sqljdbc_<version>_enu.tar.gz
from
https://www.microsoft.com/en-
us/download/details.aspx?
id=55539, extract it, then copy
mssql-jdbc-<version>.jre8.jar
to the jdbc-drivers directory.

Sybase ASE 15.7+ com.sybase.jdbc4.jdbc.SybDrive
r

OR

net.sourceforge.jtds.jdbc.Driver

To use the FreeTDS driver,
download the latest version
from https://sourceforge.net/
projects/jtds/files/, extract it,
then copy jtds-<version>.jar to
the jdbc-drivers directory.

To use the jConnect driver, copy
jConnect-<version>.jar from
your ASE directory to the jdbc-
drivers directory.

48

https://jdbc.postgresql.org/download.html
https://jdbc.postgresql.org/download.html
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://www.microsoft.com/en-us/download/details.aspx?id=55539
https://www.microsoft.com/en-us/download/details.aspx?id=55539
https://www.microsoft.com/en-us/download/details.aspx?id=55539
https://sourceforge.net/projects/jtds/files/
https://sourceforge.net/projects/jtds/files/

Name JDBC class Notes

Oracle 12c+ oracle.jdbc.OracleDriver Download the latest ojdbc8.jar
from http://www.oracle.com/
technetwork/database/features/
jdbc/jdbc-ucp-122-3110062.html
and copy it to the jdbc-drivers
plugin directory.

Presto com.facebook.presto.jdbc.Presto
Driver

Download the latest JDBC driver
from https://prestodb.io/docs/
current/installation/jdbc.html
and copy it to the jdbc-drivers
plugin directory.

Spark SQL 2.2+ com.simba.spark.jdbc41.Driver The Magnitude JDBC driver for
Spark can be purchased at
https://www.simba.com/
product/spark-drivers-with-sql-
connector/; once downloaded,
extract the bundle, then extract
the JDBC 4.1 archive and copy
the following jars to the jdbc-
drivers plugin directory:

SparkJDBC41.jar

commons-codec-<version>.jar

hive_metastore.jar

hive_service.jar

libfb303-<version>.jar

libthrift-<version>.jar

ql.jar

TCLIServiceClient.jar

zookeeper-<version>.jar

In addition, copy your license
file to the jdbc-drivers plugin
directory.

49

http://www.oracle.com/technetwork/database/features/jdbc/jdbc-ucp-122-3110062.html
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-ucp-122-3110062.html
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-ucp-122-3110062.html
https://prestodb.io/docs/current/installation/jdbc.html
https://prestodb.io/docs/current/installation/jdbc.html
https://www.simba.com/product/spark-drivers-with-sql-connector/
https://www.simba.com/product/spark-drivers-with-sql-connector/
https://www.simba.com/product/spark-drivers-with-sql-connector/

Name JDBC class Notes

Dremio com.dremio.jdbc.Driver Download the jar at
https://download.siren.io/
dremio-jdbc-driver-1.4.4-
201801230630490666-
6d69d32.jar and copy it to the
jdbc-drivers plugin directory.

Impala com.cloudera.impala.jdbc41.Dri
ver

Download the latest JDBC
bundle from
https://www.cloudera.com/
downloads/connectors/impala/
jdbc/2-5-42.html, extract the
bundle, then extract the JDBC
4.1 archive and copy the
following jars to the jdbc-
drivers plugin directory:

ImpalaJDBC41.jar

commons-codec-<version>.jar

hive_metastore.jar

hive_service.jar

libfb303-<version>.jar

libthrift-<version>.jar

ql.jar

TCLIServiceClient.jar

zookeeper-<version>.jar

Neo4j org.neo4j.jdbc.http.HttpDriver Download the driver from
https://mvnrepository.com/
artifact/org.neo4j/neo4j-jdbc-
driver/3.4.0 and copy the jar to
the jdbc-drivers directory.

Operations on virtual indices

The plugin supports the following operations on virtual indices:

• get mapping

• get field capabilities

50

https://download.siren.io/dremio-jdbc-driver-1.4.4-201801230630490666-6d69d32.jar
https://download.siren.io/dremio-jdbc-driver-1.4.4-201801230630490666-6d69d32.jar
https://download.siren.io/dremio-jdbc-driver-1.4.4-201801230630490666-6d69d32.jar
https://download.siren.io/dremio-jdbc-driver-1.4.4-201801230630490666-6d69d32.jar
https://www.cloudera.com/downloads/connectors/impala/jdbc/2-5-42.html
https://www.cloudera.com/downloads/connectors/impala/jdbc/2-5-42.html
https://www.cloudera.com/downloads/connectors/impala/jdbc/2-5-42.html
https://mvnrepository.com/artifact/org.neo4j/neo4j-jdbc-driver/3.4.0
https://mvnrepository.com/artifact/org.neo4j/neo4j-jdbc-driver/3.4.0
https://mvnrepository.com/artifact/org.neo4j/neo4j-jdbc-driver/3.4.0

• search

• msearch

• get

• mget

Search requests involving a mixture of virtual and normal Elasticsearch indices (e.g. when using a
wildcard) are not supported and will be rejected; it is however possible to issue msearch requests
containing requests on normal Elasticsearch indices and virtual indices.

When creating a virtual index, the plugin will create an empty Elasticsearch index for
interoperability with Search Guard and Elastic X-Pack; if an Elasticsearch index with the same
name as the virtual index already exists and it is not empty, the virtual index creation will fail.

When deleting a virtual index, the corresponding Elasticsearch index will not be removed.

Type conversion

The plugin converts JDBC types to their closest Elasticsearch equivalent:

• String types are handled as keyword fields.

• Boolean types are handled as boolean fields.

• Date and timestamp are handled as date fields.

• Integer types are handled as long fields.

• Floating point types are handled as double fields.

Complex JDBC types which are not recognized by the plugin are skipped during query processing
and resultset fetching.

Supported search queries

The plugin supports the following queries:

• match_all

• term

• terms

• range

• exists

• prefix

• wildcard

• ids

• bool

At this time the plugin provides no support for datasource specific full text search functions, so all
these queries will work as if they were issued against keyword fields.

51

Supported aggregations

Currently the plugin provides support for the following aggregations:

Metric:

• Average

• Cardinality

• Max

• Min

• Sum

Bucket:

• Date histogram

• Histogram

• Date range

• Range

• Terms

• Filters

Only terms aggregations can be nested inside a parent bucket aggregation.

Troubleshooting

Cannot reconnect to datasource by hostname after DNS update

When the Java security manager is enabled, the JVM will cache name resolutions indefinitely; if the
system you’re connecting to uses round-robin DNS or the IP address of the system changes
frequently, you will need to modify the following Java Security Policy properties:

• networkaddress.cache.ttl: the number of seconds to cache a successful DNS lookup. Defaults to
-1 (forever).

• networkaddress.cache.negative.ttl: the number of seconds to cache an unsuccessful DNS
lookup. Defaults to 10, set to 0 to avoid caching.

Connecting to Remote Elasticsearch Clusters

Siren Federate provides the capability to query data from an Elasticsearch remote cluster through
the Remote Clusters Module and the Federate Connector APIs.

Through Federate Connector APIs, datasources and virtual indices can be managed using the
Federate REST API or the web user interface available from Siren Investigate.

NOTE: This connector, unlike the JDBC connector, supports wildcard index patterns.

52

https://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-remote-clusters.html
connector-elasticsearch.pdf#siren-federate-connector-datasource-api

Configuring the Remote Cluster

To send queries from a cluster (let’s call it the coordinator) to remote Elasticsearch clusters, the
remote clusters must be configured as described in Configuring remote clusters.

The Siren Federate plugin has to be installed on the remote clusters.

This example shows how to set up the remote Elasticsearch clusters:

curl -X PUT http://localhost:9200/_cluster/settings -H 'Content-type:
application/json' -d '
{
 "persistent": {
 "cluster": {
 "remote": {
 "remotefederate": {
 "seeds": [
 "127.0.0.1:9330"
]
 }
 }
 }
 }
}
'

Configuring the Datasource

A datasource must first be defined as an alias to the remote cluster. Datasources are created in the
coordinator cluster using the Federate REST API.

curl -X PUT http://localhost:9200/_siren/connector/datasource/remotefederateds -H
'Content-type: application/json' -d '
 {
 "elastic": {
 "alias": "remotefederate"
 }
 }
 '

Configuring the Virtual Index

Let’s assume our remote cluster remotefederate has indices called logs-2019.01, logs-2019.02, …,
logs-2019.12.

Using a Wildcard Index Pattern

Let’s define a virtual index on the coordinator cluster that matches the wildcard index pattern
logs-* using the Federate Virtual Index API:

53

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-remote-clusters.html#configuring-remote-clusters
connector-elasticsearch.pdf#siren-federate-connector-datasource-api

curl -X PUT http://localhost:9200/_siren/connector/index/logsvi -H 'Content-type:
application/json' -d '
{
 "datasource": "remotefederateds",
 "resource": "logs-*",
 "key": "_id"
}
'

Assuming the coordinator cluster has an index called machines which contains information on IP
addresses on machines of interest, and that we would like to find out about the logs associated to
these machines, you can execute the following Federate JOIN query to do so:

curl -X GET http://localhost:9200/siren/logsvi/_search -H 'Content-Type:
application/json' -d '
{
 "query": {
 "join": {
 "indices": [
 "machines"
],
 "on": [
 "logs_ip_hash",
 "machines_ip_hash"
],
 "request": {
 "query": {
 "match_all": {

 }
 }
 }
 }
 }
}
'

logs_ip_hash is the IP field in the index logsvi and machines_ip_hash is the IP field in the index
machines.

Known limitations

In order to take advantage of Federate with a remote cluster, at the moment a coordinator Federate
cluster must run 6.8.13-10.3.8 up and the remote cluster must run Federate version from 6.5.4-10.2.0
up.

54

Search Guard Compatibility

The connector is compatible with Search Guard. One can define Search Guard users with roles to
secure the remote clusters and the coordinator cluster.

Each cluster must have the same user that has permissions to access the cluster datasources,
indices and virtual indices in order to properly execute Federate search requests on remote
clusters.

Using curl and a Search Guard user called admin, the command would start like this:

curl -k -uadmin:password -X PUT https://localhost:9200/<some API request> ...

More information is available on the Search Guard website.

Known Limitations

Limitations for all the connectors

• Cross backend join currently supports only integer keys.

• Cross backend support has very different scalability according to the direction of the Join, a join
which involves sending IDs to a remote system will be possibly hundreds of times less scalable
(e.g. thousands vs millions) to one where the keys are fetched from a remote system.

• Currently cross cluster searches on virtual indices are not supported.

Limitations for the JDBC Connector

• Wildcards on virtual index names are not supported by any API; a wildcard search will silently
ignore virtual indices.

• Document-level security and field-level security are currently not supported.

• Only terms aggregations can be nested inside a parent bucket aggregation.

• The missing parameter in bucket aggregations is not supported.

• Scripted fields are not supported.

• When issuing queries containing string comparisons, the plugin does not force a specific
collation, if a table behind a virtual indices uses a case insensitive collation, string comparisons
will be case insensitive.

• Complex types are supported when their property types are scalar (text, numbers, boolean) or
collections (list, map).

• Arrays of complex type are supported if the complex type meets the previous requirement.

Set Up Security
The Siren Federate plugin is compatible with Search Guard and Elastic X-Pack. You will find below
instructions on how to configure both solutions for Federate.

55

https://docs.search-guard.com/latest/first-steps-user-configuration
https://docs.search-guard.com

Search Guard

We assume in this section that you are familiar with Search Guard, that Search Guard is installed in
your cluster, and that you know how to configure users, roles and permissions. If not, please refer
to the Search Guard documentation first.

Configuring Action Groups

Here is a list of action groups that are suitable for Federate.

sg_action_groups.yml

INDEX LEVEL

INDICES_ALL:
 - "indices:*"

MANAGE:
 - "indices:monitor/*"
 - "indices:admin/*" ①

WRITE:
 - "indices:data/write*"
 - "indices:admin/mapping/put"

READ: ②
 - "indices:data/read*"

VIEW_INDEX_METADATA: ③
 - "indices:admin/aliases/get"
 - "indices:admin/aliases/exists"
 - "indices:admin/get"
 - "indices:admin/exists"
 - "indices:admin/mappings/fields/get*"
 - "indices:admin/mappings/get*"
 - "indices:admin/mappings/federate/connector/get*"
 - "indices:admin/mappings/federate/connector/fields/get*"
 - "indices:admin/types/exists"
 - "indices:admin/validate/query"
 - "indices:monitor/settings/get"

CLUSTER LEVEL

CLUSTER_ALL:
 - "cluster:*"

CLUSTER_MONITOR:
 - "cluster:monitor/*" ④

CLUSTER_COMPOSITE_OPS:
 - CLUSTER_COMPOSITE_OPS_RO

56

https://docs.search-guard.com/latest/index.html

 - "indices:data/write/bulk"

CLUSTER_COMPOSITE_OPS_RO:
 - "indices:data/read/mget"
 - "indices:data/read/msearch"
 - "indices:data/read/mtv"
 - "indices:data/read/scroll*"

CLUSTER_MANAGE: ⑤
 - CLUSTER_INTERNAL_FEDERATE
 - "cluster:admin/federate/*"
 - "indices:admin/aliases*"

CLUSTER_INTERNAL_FEDERATE: ⑥
 - "cluster:internal/federate/*"

1. Federate’s actions related to index administration are prefixed with indices:admin/federate

2. Federate’s actions related to index read are prefixed with indices:data/read/federate

3. Grants permission to read index metadata, like getting field mapping

4. Federate’s actions related to cluster monitoring are prefixed with cluster:monitor/federate

5. Federate’s actions related to Federate administration are prefixed with cluster:admin/federate

6. All internal Federate’s actions are prefixed with cluster:internal/federate

Configuring Role-Based Access Control

Given the action groups defined above, we can define two types of roles:

• the federate_admin role which can administrate Federate. For example, this role can manage
license, virtual indices, ingestion jobs, etc.

• the federate_user role with read-only permissions which can execute Federate’s search requests
against one or more indices (virtual or not).

57

sg_roles.yml

federate_admin:
 cluster:
 - CLUSTER_MANAGE ①
 - CLUSTER_MONITOR ②
 indices:
 'logstash-*':
 '*':
 - MANAGE
 - READ
 - VIEW_INDEX_METADATA ③

federate_user:
 cluster:
 - CLUSTER_INTERNAL_FEDERATE ④
 indices:
 companies:
 '*':
 - READ
 - VIEW_INDEX_METADATA ③

1. Grants Federate cluster administration permissions.

2. Grants Federate cluster monitoring permissions.

3. Grants permissions to read index metadata. This is required given that the Federate’s query
engine will access index schema metadata using indices:admin/mappings/fields/get during the
query evaluation.

4. Grants cluster-level permission for Federate’s internal actions. This is required for every
Federate users.

Securing Connector

When using Search Guard, Federate will need to authenticate as a user with all the permissions on
the indices storing datasources and virtual indices configuration. The credentials of this user can be
specified through the following node configuration settings:

• siren.connector.username: the username of the Federate system user.

• siren.connector.password: the password of the Federate system user.

Federate system role

If your cluster is protected by Search Guard, it is required to define a role with access to the
Federate indices and internal operations and to create a Federate system user with this role.

Whenever a virtual index is created the Federate plugin creates a concrete Elasticsearch index with
the same name as the virtual index: when starting up, the Federate plugin will check for missing
concrete indices and will attempt to create them automatically.

58

sg_roles.yml

federate_system:
 indices:
 '?siren-federate-*':
 '*':
 - INDICES_ALL

Then create a user with that role e.g., a user called federate_system_user.

Example 1. Master node in a cluster with authentication and federate_system_user user:

elasticsearch.yml

siren.connector.username: federate_system_user
siren.connector.password: password
siren.connector.encryption.secret_key: "1zxtIE6/EkAKap+5OsPWRw=="

Example 2. JDBC node in a cluster with authentication and federate_system_user user:

elasticsearch.yml

siren.connector.username: federate_system_user
siren.connector.password: password
siren.connector.encryption.secret_key: "1zxtIE6/EkAKap+5OsPWRw=="
node.attr.connector.jdbc: true

Restart the nodes after setting the appropriate configuration parameters.

Administrative role

In order to manage, search, read datasources and virtual indices, it is required to grant the
following cluster and indices-level permissions:

• cluster:admin/federate/connector/* which are given by the CLUSTER_MANAGE group;

• indices:admin/federate/connector/* which are included in the MANAGE group;

• indices:admin/mappings/federate/connector/* which are part of the VIEW_INDEX_METADATA group;
and

• indices:data/read/federate/connector/* which are part of the READ group.

When a virtual index is defined, index-level write permissions are required because Federate
creates a concrete index with the same name for interoperability with authentication plugins,
unless such an index already exists.

For instance, if a MySQL datasource is defined and is named db_mysql, an index named db_mysql will
be created. Then, the following connector_admin role can be created in order to manage/read/search

59

it.

sg_roles.yml

connector_admin:
 cluster:
 - CLUSTER_MANAGE
 - CLUSTER_MONITOR
 indices:
 db_mysql:
 '*':
 - READ
 - VIEW_INDEX_METADATA
 - MANAGE

NOTE
Write operations are made on the virtual index, not against the actual datasource
per se.

Search role

In order to search virtual indices, a user needs indices:data/read/federate/connector/* permissions
which are part of the READ group.

Keeping with the db_mysql virtual index example, a connector_user needs the following permissions
granted:

sg_roles.yml

connector_user:
 cluster:
 - CLUSTER_INTERNAL_FEDERATE
 indices:
 db_mysql:
 '*':
 - READ

Elastic X-Pack Security

https://www.elastic.co/guide/en/x-pack/current/elasticsearch-security.html

60

https://www.elastic.co/guide/en/x-pack/current/elasticsearch-security.html

federate system

{
 "federate_system": {
 "cluster": [
 "cluster:internal/federate/*",
 "cluster:admin/federate/*",
 "cluster:monitor/*"
],
 "indices": [
 {
 "names": [
 "/\\.siren.*/"
],
 "privileges": [
 "all"
]
 },
 {
 "names": [
 "*"
],
 "privileges": [
 "indices:monitor/*",
 "indices:admin/*",
 "indices:data/read*",
 "indices:data/write*"
]
 }
]
 }
}

61

Admin role

{
 "federate_admin": {
 "cluster": [
 "cluster:internal/federate/*",
 "cluster:admin/federate/*",
 "cluster:monitor/*",
 "cluster:admin/xpack/security/*"
],
 "indices": [
 {
 "names": [
 "*"
],
 "privileges": [
 "indices:monitor/*",
 "indices:admin/*",
 "indices:data/read*"
]
 }
]
 }
}

62

Search role

{
 "federate_user": {
 "cluster": [
 "cluster:internal/federate/*"
],
 "indices": [
 {
 "names": [
 "logstash-*"
],
 "privileges": [
 "indices:data/read*",
 "indices:admin/aliases/get",
 "indices:admin/aliases/exists",
 "indices:admin/get",
 "indices:admin/exists",
 "indices:admin/mappings/fields/get*",
 "indices:admin/mappings/get*",
 "indices:admin/mappings/federate/connector/get*",
 "indices:admin/mappings/federate/connector/fields/get*",
 "indices:admin/types/exists",
 "indices:admin/validate/query",
 "indices:monitor/settings/get",
 "indices:admin/template/get"
]
 }
]
 }
}

Performance Considerations

Join Types

Siren Federate includes different join strategies: “Broadcast Join” and “Hash Join”. Each one has its
pros and cons and the optimal performance will depend on the scenario. By default, the Siren
Federate planner will try to automatically pick the best strategy, but it might be best in certain
scenarios to pick manually one of the strategies.

The Broadcast Join is best when filtering a large index with a small set of documents. The Hash Join
is fully distributed and is designed to handle large joins. It scales horizontally (based on the number
of nodes) and vertically (based on the number of cpu cores).

Siren Federate provides a fully distributed join algorithm: the Hash Join. The Hash Join is designed
for leveraging multi-core architecture. This is achieved by creating many small data partitions
during the Project phase. Each node of the cluster will receive a number of partitions that are
dependent of the number of cpus. Partitions are independent from each other and can be processed

63

independently by a different join worker thread. During the join phase, each worker thread will
join tuples from one partition. The number of join worker threads scales automatically with the
number of cpu cores available.

The Hash Join is performed in two phases: build and probe. The build phase creates a in-memory
hash table of one of the relation in the partition. The probe phase then scans the second relation
and probes the hash table to find the matching tuples.

Numeric vs String Attributes

Joining numeric attributes is more efficient than joining string attributes. If you are planning to
join attributes of type string, we recommend to generate a murmur hash of the string value at
indexing time into a new attribute, and use this new attribute for the join. Such index-time data
transformation can be easily done using Logstash’s fingerprint plugin.

Tuple Collector Settings

Tuple Collectors are sending batches of tuples of fixed size. The size of a batch has an impact on the
performance. Smaller batches will take less memory but will increase cpu times on the receiver
side since it will have to reconstruct a tuple collection from many small batches (especially for
sorted tuple collection). By default, the size of a batch of tuple is set to 1048576 tuples (which
represents 8mb for a column of long datatype). The size can be configured using the setting key
siren.io.tuple.collector.batch_size with a integer value representing the maximum number of
tuples in a batch. :leveloffset: -1

64

https://www.elastic.co/guide/en/logstash/current/plugins-filters-fingerprint.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-fingerprint.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-fingerprint.html

	Siren Federate User Guide
	Table of Contents
	Introduction
	Architecture
	Getting Started
	Set Up Federate
	Federate Modules
	Search APIs
	Query DSL
	Cluster APIs
	Index APIs
	Connector APIs
	Sessions APIs
	License APIs
	Connecting to Remote Datasources
	Set Up Security
	Performance Considerations

