
Siren Federate User Guide

Table of Contents
Introduction to Siren Federate . 1

The federation of remote Elasticsearch clusters . 1

The reflection of external databases . 2

A distributed join between indices . 2

Join query cache . 4

Architecture . 5

Distributed Join Workflow. 5

Query Planning & Optimisation . 6

IO . 7

Getting Started. 7

Installing the Siren Federate Plugin . 7

Starting Elasticsearch . 8

Loading Some Relational Data . 9

Relational Querying of the Data . 10

Setting up Siren Federate . 12

Configuring logging . 13

Configuring the off-heap memory . 13

Configuring security for Siren Federate . 15

Connecting to remote datasources . 26

Configuring joins by type . 37

Federate Modules . 42

Planner . 42

Memory . 43

IO . 44

Thread Pools . 46

Query Cache . 46

Connector. 46

Search APIs . 47

Search API . 47

Multi Search API. 48

Search Request . 48

Search Response. 49

Cancelling a request . 50

Validating a request. 51

Query domain-specific language (DSL) . 61

Join query . 61

Paginating a Search Request . 74

Open and Close Point-In-Times. 74

Pagination . 74

Limitations. 77

Cluster APIs . 77

Nodes Statistics . 78

Index APIs . 83

Query Cache . 84

Connector APIs . 84

Configuring a JDBC-enabled node . 84

Datasource API . 85

Virtual index API . 92

Ingestion API . 93

Job API . 100

Sessions APIs . 104

Get Sessions. 104

Clear Sessions . 105

License APIs. 105

Put License . 106

Get License . 106

Delete License. 107

Performance Considerations . 107

Join types . 107

Numeric versus string attributes . 108

Vectorized pipeline performance . 108

Using the preference parameter for search requests . 108

Caution when force-merging single-segment indices . 108

Troubleshooting guide . 108

Installation error when extracting the plugin ZIP file . 108

Cannot start the buffer allocator service . 110

Out of memory exception . 111

Changing the thread pool queue size . 111

Supported data types in a join . 111

Support for joining on the document ID . 112

Minimum memory requirements . 112

System performance . 112

Release notes . 112

7.16.3-26.5 . 112

7.16.2-26.4 . 112

7.16.2-26.3 . 113

7.16.1-26.2 . 113

7.15.2-26.1 . 113

7.15.1-26.0 . 113

Glossary . 114

Introduction to Siren Federate
Welcome to the documentation for Siren Federate version {page-component-version}.

NOTE
You can select a previous version by using the dropdown menu in the navigation
bar. To access all previous versions, go to www.docs.siren.io.

For a full list of improvements, fixes, and security enhancements, see the release notes .

The Siren Federate plugin extends Elasticsearch with the following main functions:

• A federation layer that enables the virtualization and querying of remote Elasticsearch clusters.

• A reflection layer that enables the caching of data from external databases within Elasticsearch.

• A distributed join layer that enables the execution of join operations at scale.

• A join-caching layer, based on patent-pending techniques, that enables the caching of the most
common join results for faster execution times.

The federation of remote Elasticsearch clusters
Siren Federate provides a module, called Connector, which presents indices from remote
Elasticsearch clusters as local to the cluster, denoted as 'virtual indices'.

The connector APIs allow you to register a remote Elasticsearch cluster as a datasource.

After a datasource is registered, an index from the remote cluster can be mapped to a virtual index.
When a request is sent to the virtual index by using an Elasticsearch API, such as the Mapping or
Search API, the request is intercepted by the Connector module.

1

https://docs.siren.io

The reflection of external databases
Siren Federate provides a feature, called 'Reflection', which enables the import of data into
Elasticsearch from an external datasource. A reflection is a recurrent and fully-managed ingestion
that replicates the data from a datasource into an Elasticsearch index.

This can be useful in different scenarios. For example, if a user wants to take advantage of the
unique search capabilities of the Elasticsearch back-end system, they might want to decrease the
load on the external database system, or they might want to increase the performance, given that
Elasticsearch is typically faster than SQL back-end systems (such as Spark SQL) for search and
analytics.

A distributed join between indices
Siren Federate extends the Elasticsearch Query DSL with a join query clause, which enables the
execution of a join operation between two sets of documents, based on a join condition. To create
complex query plans, you can freely combine and nest multiple join query clauses by using boolean
operators, such as conjunctions, disjunctions, or negations.

The join condition is based on an equality operator between two fields and is satisfied when
documents have equivalent values for the specified fields. The two fields must be of the same data
type. Numerical and textual fields are supported.

Siren Federate currently supports two types of join operation: the (left) semi join and the inner join.
The join operation is implemented on top of an in-memory distributed computing layer, which
scales with the number of nodes available in the cluster. The join operation is parallelized to scale
with the number of CPU cores that are available in a machine.

During the execution of a join operation, projected fields from documents are shuffled across the
network and stored in memory. The projected fields are encoded in a columnar format using
Apache Arrow and stored in the off-heap memory, therefore reducing its impact on the heap
memory.

Semi-join

The semi-join is used to filter one set of documents, A, based on a second set of documents, B. A
semi-join between the two sets of documents, A and B, returns the documents of A that satisfy the
join condition with the documents of B. This is equivalent to the EXISTS() operator in SQL.

Inner join

The inner join enables the “projection” of arbitrary fields (including script fields and document’s
scores) from a set of documents, B, and “combines” them with a set of documents, A. The projected
fields and associated values of a document from set B are mapped to all of the documents from set
A that satisfy the join condition. The result of the join is the set of documents, A, augmented by the
projected fields from the set of documents, B.

This inner join is useful when there is a need to materialize a view over many disparate records

2

https://arrow.apache.org/

located in multiple data sources.

It is common in log analysis, cyber threat inspection, and intelligence investigation to have diverse
recorded events about a particular entity, which are spread across multiple data sources. For
example, a user can be linked to one or more sessions and a session can be linked to one or more
events, such as login, logout, unauthorized actions, and so on. It is difficult to answer questions
such as, “find all of the users who were logged in at time t” or “find all of the users who displayed
irregular online activity” from a disparate set of records.

In this scenario, the inner join enables the collection and the grouping of multiple events into a
particular context for further analysis.

How does the Siren Federate join compare with the Elasticsearch parent-
child model?

The Siren Federate join is similar in nature to the Parent-Child feature of Elasticsearch: they
perform a join at query-time. However, there are important differences between them:

• The parent-child model requires the denormalization of your data model into a hierarchical
form. This limits the flexibility of the data modeling and may lead to data redundancy. Siren
Federate does not have this data modeling constraint and allows data normalization.

• The parent document and all of its children must live on the same shard. This limits scalability,
because you cannot distribute child documents to other shards or, therefore, to other nodes.
The Siren Federate join removes this constraint: it allows you to join documents across shards
and across indices.

• Thanks to the data locality of the parent-child model, the computation of a join does not require
transferring data across the network. On the contrary, Siren Federate needs to transfer data
across the network while it computes joins across indices, which impacts its performance.

There is no 'one size fits all' solution to this problem, and you need to understand your
requirements well to choose the most suitable solution. As a basic rule, if your data model and data
relationships are purely hierarchical (or can be mapped to a purely hierarchical model), then the
parent-child model might be more appropriate. On the other hand, if you need to query both
directions of a data relationship, then the Siren Federate join might be more appropriate.

The data model on which the Siren Federate join operates

The most important requirement for executing a join is to have a common shared attribute
between two indices. For example in the diagram below, there is a simple relational data model that
is composed of two tables, article and company, and of one junction table art_comp_mentions to
encode the many-to-many relationships between them.

3

https://www.elastic.co/guide/en/elasticsearch/guide/current/parent-child.html

This model can be mapped to two Elasticsearch indices, article and company, as shown in the
diagram below. An article document will have a multi-valued field mentions with the unique
identifiers of the companies mentioned in the article. In other words, the field mentions is a foreign
key in the article table that refers to the primary key of the company table.

It is possible and uncomplicated to write an SQL statement to flatten and map relationships into a
single multi-valued field. Compared to a traditional database model, where a junction table is
necessary, the data model can be simplified by taking advantage of multi-valued fields.

Join query cache
Siren Federate provides a query caching mechanism that enables efficient join processing and
reduces the query response time. Query caching exploits the idea of reusing cached query results to
answer new queries. Caching not only improves the user’s experience, but also reduces the
Elasticsearch cluster workload and increases its scalability.

The join query cache in Siren Federate works similarly to the query cache of Elasticsearch. The
results of a join query clause, which is a list of document identifiers, are cached efficiently by using
a bitset data structure. A semantic definition of the join operation is computed and is used as a
signature for the cache entry.

When a new query is received by the system, a signature for each of its join operations is computed
and compared with the existing signature that is stored in the cache. The new query can be either
totally or partially answered by the cached entries. In the case that it is only partially answered, the
query is trimmed based on the cached entries and only the remaining query is executed.

The cache uses an LRU eviction policy: When the cache is full, the least-recently-used query results
are evicted to make way for new data. The semantic definition of a join operation captures the
lineage and version of its data inputs.

If the data in one of its inputs is modified, then the signature of the join operation will be different.

4

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/query-cache.html

Therefore, the cache entry that is associated with the previous version of the data inputs will
become stale and will be evicted.

If an index has one or more replicas, it is important to specify the preference parameter of the
search request in order to optimally take advantage of the join query cache.

Architecture
Siren Federate is designed around the following core requirements:

• Low latency, real time interactive response – Siren Federate is designed to power ad hoc
interactive, read only queries such as those sent from Siren Investigate.

• Implementation of a fully featured relational algebra, capable of being extended for advanced
join conditions, operations and statistical optimizations.

• Flexible in-memory distributed computational framework.

• Horizontal scaling of fully distributed operations, leveraging all the available nodes in the
cluster.

• Federated – capable of working on data that spans several Elasticsearch clusters.

Siren Federate is based on the following high level architecture concepts:

• A coordinator node, which is in charge of the query parsing, query planning, and query
execution. The Apache Calcite engine creates a logical plan of the query, optimizes the logical
plan, and executes a physical plan.

• A set of worker processes, which are in charge of executing the physical operations. Depending
on the type of physical operation, a worker process is spawned on a per-node or per-shard
basis.

• An in-memory distributed file system that is used by the worker nodes to exchange data, with a
compact columnar data representation optimized for analytical data processing, zero copy and
zero data serialisation.

Distributed Join Workflow
When a (multi) search request is sent with one or more nested joins, the node that receives the
request becomes the “Coordinator” node. The coordinator node is in charge of controlling and
executing a “Job” across the available nodes in the cluster. A job represents the full workflow of the
execution of a (multi) search request. A job is composed of one or more “Tasks”. A task represents a
single type of operation, such as a Search/Project or Join, which is executed by a “Worker” on a
node. A worker is a thread that performs a task and reports the outcome of the task to the
coordinator.

For example, the following search request joining the index company with article:

5

curl -H 'Content-Type: application/json' -XGET
'http://localhost:9200/siren/company/_search' -d '
{
 "query" : {
 "join" : {
 "type": "HASH_JOIN",
 "indices" : ["article"],
 "on": ["id", "mentions"],
 "request" : {
 "query" : {
 "match_all": {}
 }
 }
 }
 }
}
'

will produce the following workflow:

The coordinator executes a Search/Project task on every shard of the company and article indices.
These tasks first execute a search query to compute the matching documents, then scan the id and
mentions fields of the matching documents and, finally, shuffle them to all of the nodes of the
cluster. Once these tasks are completed, the coordinator executes a Hash Join task on every node of
the cluster. The Hash Join task joins the two streams of data that have been sent by the two previous
Search/Project tasks to compute a set of document ids for the company index. These document
identifiers are then transferred back to their respective shards and used to filter the company index.

This workflow allows Siren Federate to push all of the filtering predicates (for example, terms,
range, or boolean queries) down to Elasticsearch, leveraging the indices for fast computation.

Query Planning & Optimisation
The coordinator node leverages Apache Calcite for planning the job execution. A search request is
first parsed into an abstract syntax tree before being transformed into a logical relational plan. A

6

https://calcite.apache.org/

set of rules will then be applied to optimize the logical plan. We leverage both the Hep and Volcano
engines to optimize the logical plan using heuristic and statistical information. The logical plan is
then transformed into a physical plan before being executed.

The physical plan represents a tree of tasks to be executed. The coordinator will try to execute tasks
concurrently when possible. In the previous example, the two Search/Project tasks are executed
concurrently, and the Hash Join task is executed only after the completion of the two Search/Project
tasks.

When handling a multi search request, each request will be planned separately, each one
producing a physical plan. However, before the execution of the physical plans, the planner will
combine all the physical plans into a single one, by mapping identical operations to one single task.
We can see that as a step to fold multiple trees of tasks into a single directed graph model, where
overlapping operations across trees will become one single vertex in the graph. This is useful to
reuse computation across multiple requests.

IO
The shuffling and transfer of data produced by a task is handled by a Collector. A collector will
collect data, serialize it into a compact columnar data representation, and transfer it in the form of
binary packets. Different collector strategies are implemented that are adapted to different tasks.
For example, in case of a Hash Join, a Search/Project task will use a collector with a hash
partitioning strategy to create small data partitions and shuffle these partitions uniformly across
the cluster.

On the receiver side, when a packet is received, it is stored as is (without deserialization) in an in-
memory data store. Tasks, such as the Join task, will directly work on top of these binary data
packets in order to avoid unnecessary data copy and deserialization.

The binary data packets are created, stored, and manipulated off-heap. This helps to reduce
unnecessary loads on the JVM and Garbage Collection when dealing with a large amount of data.
Siren Federate leverages the Apache Arrow project for the allocation and management of off-heap
byte arrays.

Getting Started
In this short guide, you will learn how you can quickly install the Siren Federate plugin in
Elasticsearch, load two sets of documents inter-connected by a common attribute, and execute a
relational query across the two sets within the Elasticsearch environment.

Installing the Siren Federate Plugin
From the Elasticsearch installation directory, run the following command:

7

https://arrow.apache.org/

$./bin/elasticsearch-plugin install
https://download.support.siren.io/federate/7.16.3-26.5.zip
-> Downloading https://download.support.siren.io/federate/7.16.3-26.5-proguard-
plugin.zip
[===] 100%
@@@
@ WARNING: plugin requires additional permissions @
@@@
* java.io.FilePermission cloudera.properties read
* java.io.FilePermission simba.properties read
* java.lang.RuntimePermission accessClassInPackage.sun.misc
* java.lang.RuntimePermission accessClassInPackage.sun.misc.*
* java.lang.RuntimePermission accessClassInPackage.sun.security.provider
* java.lang.RuntimePermission accessDeclaredMembers
* java.lang.RuntimePermission createClassLoader
* java.lang.RuntimePermission getClassLoader
...
See http://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html
for descriptions of what these permissions allow and the associated risks.

Continue with installation? [y/N]y
-> Installed siren-federate

To remove the plugin, run the following command:

$ bin/elasticsearch-plugin remove siren-federate

-> Removing siren-federate...
Removed siren-federate

Starting Elasticsearch
To launch Elasticsearch, run the following command:

$./bin/elasticsearch

In the output, you should see a line like the following which indicates that the Siren Federate plugin
is installed and running:

[2017-04-11T10:42:02,209][INFO][o.e.p.PluginsService] [etZuTTn] loaded plugin
[siren-federate]

8

Loading Some Relational Data
We will use a simple synthetic dataset for the purpose of this demo. The dataset consists of two sets
of documents: Article and Company. An article is connected to a company with the attribute
mentions. Article will be loaded into the article index and company in the company index. To load the
dataset, run the following command:

$ curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/article'
$ curl -H 'Content-Type: application/json' -XPUT
'http://localhost:9200/article/_mapping' -d '
{
 "properties": {
 "mentions": {
 "type": "keyword"
 }
 }
}
'
$ curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/company'
$ curl -H 'Content-Type: application/json' -XPUT
'http://localhost:9200/company/_mapping' -d '
{
 "properties": {
 "id": {
 "type": "keyword"
 }
 }
}
'

$ curl -H 'Content-Type: application/json' -XPUT
'http://localhost:9200/_bulk?pretty&refresh=true' -d '
{ "index" : { "_index" : "article", "_id" : "1" } }
{ "title" : "The NoSQL database glut", "mentions" : ["1", "2"] }
{ "index" : { "_index" : "article", "_id" : "2" } }
{ "title" : "Graph Databases Seen Connecting the Dots", "mentions" : [] }
{ "index" : { "_index" : "article", "_id" : "3" } }
{ "title" : "How to determine which NoSQL DBMS best fits your needs", "mentions" :
["2", "4"] }
{ "index" : { "_index" : "article", "_id" : "4" } }
{ "title" : "MapR ships Apache Drill", "mentions" : ["4"] }

{ "index" : { "_index" : "company", "_id" : "1" } }
{ "id": "1", "name" : "Elastic" }
{ "index" : { "_index" : "company", "_id" : "2" } }
{ "id": "2", "name" : "Orient Technologies" }
{ "index" : { "_index" : "company", "_id" : "3" } }
{ "id": "3", "name" : "Cloudera" }
{ "index" : { "_index" : "company", "_id" : "4" } }
{ "id": "4", "name" : "MapR" }

9

'

{
 "took" : 8,
 "errors" : false,
 "items" : [{
 "index" : {
 "_index" : "article",
 "_id" : "1",
 "_version" : 1,
 "result" : "created",
 "_shards" : {
 "total" : 2,
 "successful" : 2,
 "failed" : 0
 },
 "_seq_no" : 0,
 "_primary_term" : 1,
 "status" : 201
 }
 },
 ...
}

Relational Querying of the Data
We will now show you how to execute a relational query across the two indices. For example, we
would like to retrieve all the articles that mention companies whose name matches orient. This
relational query can be decomposed in two search queries: the first one to find all the companies
whose name matches orient, and a second query to filter out all articles that do not mention a
company from the first result set. The Siren Federate plugin introduces a new Elasticsearch filter,
named join, that allows to define such a query plan and a new search API siren/<index>/_search
that allows to execute this query plan. Below is the command to run the relational query:

10

$ curl -H 'Content-Type: application/json'
'http://localhost:9200/siren/article/_search?pretty' -d '{ ①
 "query" : {
 "join" : { ②
 "indices" : ["company"], ③
 "on" : ["mentions", "id"], ④
 "request" : { ⑤
 "query" : {
 "term" : {
 "name" : "orient"
 }
 }
 }
 }
 }
}'

① The target index (i.e. article)

② The join query clause

③ The source indices (i.e., company)

④ The clause specifying the paths for join keys in both source and target indices

⑤ The search request that will be used to filter out company (source set)

The command should return you the following response with two search hits:

{
 "hits" : {
 "total" : 2,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "article",
 "_id" : "1",
 "_score" : 1.0,
 "_source":{ "title" : "The NoSQL database glut", "mentions" : ["1", "2"] }
 }, {
 "_index" : "article",
 "_id" : "3",
 "_score" : 1.0,
 "_source":{ "title" : "How to determine which NoSQL DBMS best fits your needs",
"mentions" : ["2", "4"] }
 }]
 }
}

You can also reverse the order of the join, and query for all the companies that are mentioned in
articles whose title matches nosql:

11

$ curl -H 'Content-Type: application/json'
'http://localhost:9200/siren/company/_search?pretty' -d '{
 "query" : {
 "join" : {
 "indices" : ["article"],
 "on": ["id", "mentions"],
 "request" : {
 "query" : {
 "term" : {
 "title" : "nosql"
 }
 }
 }
 }
 }
}'

The command should return you the following response with three search hits:

{
 "hits" : {
 "total" : 3,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "company",
 "_id" : "4",
 "_score" : 1.0,
 "_source":{ "id": "4", "name" : "MapR" }
 }, {
 "_index" : "company",
 "_id" : "1",
 "_score" : 1.0,
 "_source":{ "id": "1", "name" : "Elastic" }
 }, {
 "_index" : "company",
 "_id" : "2",
 "_score" : 1.0,
 "_source":{ "id": "2", "name" : "Orient Technologies" }
 }]
 }
}

Setting up Siren Federate
After Siren Federate is installed, some configuration tasks are required to set it up for your
organization’s needs.

12

The following section contains information about connecting datasources, setting up security,
configuring join types, and setting limits for memory usage.

Some examples are provided to ensure that you can make the right settings for your needs and get
started with Siren Federate as quickly as possible.

In this section

Configuring logging

Configuring off-heap memory

Configuring security

Connecting remote datasources

Configuring joins by type

Configuring logging
The default Elasticsearch log configuration can cause an excessive number of log messages when a
search request is cancelled.

To reduce the number of messages that are logged, complete the following steps:

1. Open the Log4j 2 properties file config/log4j2.properties.

2. Update the value of the logger.action.level parameter from debug to warn.

3. Save and close the file.

For more information about logging in Elasticsearch, see Logging configuration.

Configuring the off-heap memory
To prepare your system for use, you must first configure the off-heap memory.

The memory module is responsible for allocating and managing chunks of off-heap memory. For
more information, see the Memory section of the Modules topic.

Checking off-heap memory allocation

Siren Federate provides a cluster-level API that allows you to retrieve statistics about the cluster
and the off-heap memory allocation.

The allocated direct memory represents the off-heap memory chunks pre-allocated to
accommodate the root allocator.

The chunk of off-heap memory that was allocated is kept and reused, because off-heap memory
allocation is expensive.

The root allocator can then allocate off-heap memory buffers of various size in a very efficient way.

13

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/logging.html

Setting off-heap memory

You configure the amount of off-heap memory available for the root allocator by updating the
siren.memory.root.limit variable in the config/elasticsearch.yml file.

To set a limit for the root allocator, you must:

1. Open the config/elasticsearch.yml file and set the siren.memory.root.limit parameter to a value
that is less than the value you set in step 2, for example, 2147483647.

NOTE
It is forbidden to use a limit that is greater than or equal to the maximum direct
memory limit.

2. Start the Elasticsearch instance. The following info logs are displayed:

[2019-12-10T17:29:11,207][INFO][i.s.f.c.i.m.BufferAllocatorService] [node_s0]
Buffer allocator service starting with Unsafe access: true
[2019-12-10T17:29:11,207][INFO][i.s.f.c.i.m.BufferAllocatorService] [node_s0]
Buffer allocator service starting with directMemoryLimit=2147483648 ①
[2019-12-10T17:29:11,233][INFO][i.s.f.c.i.m.BufferAllocatorService] [node_s0]
Buffer allocator service starting with defaultNumDirectArenas=5
[2019-12-10T17:29:11,236][INFO][i.s.f.c.i.m.BufferAllocatorService] [node_s0]
Instantiating root allocator with limit=2147483647 ②

These info logs provide an overview of how Siren Federate is configured. Here, we can see that:

① The maximum direct memory limit is correctly set to the platform dependent memory limit.

② The root allocator limit is correctly set to 2147483647.

Recommended settings

It is critical to ensure that there is enough available memory on the machine to accommodate the
maximum direct memory limit for Siren Federate, the JVM maximum heap memory limit, and the
operating system.

WARNING

If the sum of maximum direct memory limit for Siren Federate and the JVM
maximum heap memory limit does not leave enough memory for the
operating system, the OS might stop the Elasticsearch instance (OOM killer
process on Linux systems).

Configuring a 64GB machine

The following are the recommended settings for a cluster that needs to execute joins on a large
amount of data:

• 24 GB heap for Elasticsearch

• 24 GB off-heap for Siren Federate

14

• 16 GB for the operating system and OS cache

config/jvm.options

-Xmx24g

config/elasticsearch.yml:

siren.memory.root.limit: 25769803775

Alternatively, if the off-heap memory for Siren Federate is not fully used, it is better to give more
heap memory to Elasticsearch:

• 32 GB heap for Elasticsearch

• 16 GB off-heap for Siren Federate

• 16 GB for the operating system and OS Cache

Configuring a 128GB machine

• 32 GB heap for Elasticsearch

• 64 GB off-heap for Federate

• 32 GB for the operating system and OS Cache

config/jvm.options

-Xmx32g

config/elasticsearch.yml:

siren.memory.root.limit: 68719476735

Alternatively, if the off-heap memory for Siren Federate is not fully used, it is better to give more
heap memory to the operating system and the OS cache.

Configuring security for Siren Federate
The Siren Federate plugin is compatible with Search Guard and Elastic X-Pack security systems.
Follow the instructions to configure one of these solutions for Siren Federate.

A security system maps a user to one or more roles.

A role grants one or more permissions, for example, the sysadmin role.

A permission maps a role to one or more actions.

An action specifies a type of request that operates at the index- or cluster level. An action is
identified by a unique identifier, for example, indices:data/read/mget, which identifies the multi get

15

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/docs-multi-get.html

action.

An action follows the schema [cluster|indices]:<a path delimited by />. For example,
cluster:internal/federate/* or indices:data/read/mget.

The following Siren Federate actions can be used to limit cluster or index requests:

• indices:admin/federate: The prefix for actions that are related to the administration of internal
Siren Federate indices.

• indices:data/read/federate: The prefix for actions that are related to reading the index.

• cluster:monitor/federate: The prefix for actions that are related to cluster monitoring.

• cluster:admin/federate: The prefix for actions that are related to Siren Federate administration.

• cluster:internal/federate: The prefix for all internal actions.

NOTE
For every Siren Federate user, you must grant cluster-level permission for internal
Siren Federate actions.

Creating roles

To get started, you can create three generic roles in Siren Federate. In a later section, there are
examples of how to implement the roles for the different security systems.

The System role

The System role manages the internal Siren Federate indices that store datasource and ingestion
configurations.

The following actions can be used for this role:

• cluster:monitor/*

• cluster:admin/*

• indices:data/read*

For datasources and ingestion, the permissions must be granted on the master nodes.

The Admin role

The Admin role performs all actions related to administration, such as managing the license, the
datasource, the virtual indices, and the ingestion jobs.

The Admin role grants permissions for Siren Federate cluster administration and monitoring.

To manage, search, and read datasources and virtual indices, grant the following cluster-level and
index-level permissions:

• cluster:admin/federate/connector/*

• indices:admin/federate/connector/*

16

• indices:admin/mappings/federate/connector/*

• indices:data/read/federate/connector/*

When a virtual index is defined, Siren Federate ensures that a concrete index exists with the same
name for inter-operability with security system plugins. For this reason, you must set the following
index-level write permissions:

• indices:data/write*

TIP
To simplify the management of virtual indices, use a naming scheme to name them,
such as virtual-*. You can then grant write permissions to all indices named virtual-*
collectively.

To manage the license, set the following cluster-level and index-level permissions:

• cluster:admin/federate/license/*

To manage the ingestion jobs, set the following permissions:

• cluster:internal/federate/connector/ingestion/*

• cluster:admin/federate/connector/ingestion/*

• cluster:admin/ingest/pipeline/put

• cluster:admin/ingest/pipeline/delete

• indices:admin/create

• indices:admin/exists

• indices:admin/mapping/put

The User role

The User role performs read-only actions on indices. This is required to execute a Siren Federate
search request on one or more indices (virtual or actual). To search virtual indices, set the following
user permissions:

• indices:data/read/federate/connector/*

To search indices, set the following user permissions:

• indices:data/read/*

These permissions allow the User role to read index metadata. This is required, because the Siren
Federate query engine accesses index schema metadata by using indices:admin/mappings/fields/get
during the query evaluation.

For datasources, the following permissions are required:

• indices:data/read/federate/connector/*

Set the following permissions for ingestion jobs:

17

• cluster:admin/ingest/pipeline/get

• cluster:admin/federate/connector/ingestion/get

• cluster:admin/federate/connector/ingestion/run

• cluster:admin/federate/connector/ingestion/search

• cluster:internal/federate/connector/datasource/get

• cluster:internal/federate/connector/ingestion/get

• indices:admin/mappings/fields/get

• indices:data/read/get

• indices:data/read/search

Securing the connector

After a security system is configured, Siren Federate needs to authenticate as a user with all
permissions on the indices that store remote datasource configurations.

The credentials of this user can be specified by setting the following node configurations:

• siren.connector.username: The username of the Siren Federate system user.

• siren.connector.password: The password of the Siren Federate system user.

Then create a user with that role, for example, a user called federate_system_user.

Master node in a cluster with authentication and federate_system_user:

elasticsearch.yml

siren.connector.username: federate_system_user
siren.connector.password: password
siren.connector.encryption.secret_key: "1zxtIE6/EkAKap+5OsPWRw=="

After you set the appropriate configuration parameters, restart the nodes.

NOTE Write operations are made on the virtual index, not against the actual datasource.

In this section

You can configure one of the following security systems for Siren Federate:

Configuring Search Guard

Configuring Elastic X-Pack

Example of configuring Search Guard

This example implements the generic concepts presented in Configuring security for Siren Federate
using Search Guard.

18

Before you begin, ensure that Search Guard is installed in your cluster, and that you know how to
configure users, roles, and permissions.

For more information, see the Search Guard documentation and the introduction in Configuring
security for Siren Federate.

Enabling custom headers

Search Guard requires plugins to declare thread headers used. In order for the Federate plugin to
work properly, the following node-level setting must be set:

searchguard.allow_custom_headers: "_siren_.*"

Configuring action groups

The sg_action_groups.yml file contains named groups of permissions that can be referred to in the
definition of roles. The following are the action groups that are suitable for Siren Federate.

sg_action_groups.yml

INDEX LEVEL

INDICES_ALL:
 allowed_actions:
 - "indices:*"

MANAGE:
 allowed_actions:
 - "indices:monitor/*"
 - "indices:admin/*"

WRITE:
 allowed_actions:
 - "indices:data/write*"
 - "indices:admin/mapping/put"

READ:
 allowed_actions:
 - "indices:data/read*"

VIEW_INDEX_METADATA:
 allowed_actions:
 - "indices:admin/aliases/get"
 - "indices:admin/aliases/exists"
 - "indices:admin/get"
 - "indices:admin/exists"
 - "indices:admin/mappings/fields/get*"
 - "indices:admin/mappings/get*"
 - "indices:admin/mappings/federate/connector/get*"
 - "indices:admin/mappings/federate/connector/fields/get*"

19

https://docs.search-guard.com/latest/index.html

 - "indices:admin/types/exists"
 - "indices:admin/validate/query"
 - "indices:monitor/settings/get"

CLUSTER LEVEL

CLUSTER_ALL:
 allowed_actions:
 - "cluster:*"

CLUSTER_MONITOR:
 allowed_actions:
 - "cluster:monitor/*"

CLUSTER_COMPOSITE_OPS:
 allowed_actions:
 - CLUSTER_COMPOSITE_OPS_RO
 - "indices:data/write/bulk"

CLUSTER_COMPOSITE_OPS_RO:
 allowed_actions:
 - "indices:data/read/mget"
 - "indices:data/read/msearch"
 - "indices:data/read/mtv"
 - "indices:data/read/open_point_in_time"
 - "indices:data/read/close_point_in_time"

CLUSTER_MANAGE:
 allowed_actions:
 - CLUSTER_INTERNAL_FEDERATE
 - "cluster:admin/federate/*"
 - "indices:admin/aliases*"

CLUSTER_INTERNAL_FEDERATE:
 allowed_actions:
 - "cluster:internal/federate/*"

Configuring role-based access control

The sg_roles.yml file contains a list of user roles. Each role contains a set of permissions at the
cluster level and for individual indices.

For example, to define the Admin role and the User role for the companies index, open the
sg_roles.yml file and specify the following:

20

sg_roles.yml

federate_admin:
 cluster_permissions:
 - CLUSTER_MANAGE
 - CLUSTER_MONITOR
 index_permissions:
 - index_patterns:
 - 'companies'
 allowed_actions:
 - MANAGE
 - READ
 - VIEW_INDEX_METADATA

federate_user:
 cluster_permissions:
 - CLUSTER_INTERNAL_FEDERATE
 index_permissions:
 - index_patterns:
 - 'company'
 allowed_actions:
 - READ
 - VIEW_INDEX_METADATA

The System role

The following is an example of a System role that can manage internal Siren Federate indices.

sg_roles.yml

federate_system:
 index_permissions:
 - index_patterns:
 - '?siren-federate-*'
 allowed_actions:
 - INDICES_ALL

The Admin role

The following is an example of an Admin role called connector_admin that can manage the index
db_mysql.

21

sg_roles.yml

connector_admin:
 cluster_permissions:
 - CLUSTER_MANAGE
 - CLUSTER_MONITOR
 index_permissions:
 - index_patterns:
 - 'db_mysql'
 allowed_actions:
 - READ
 - VIEW_INDEX_METADATA
 - MANAGE

The User role

The following is an example of a User role called connector_user with read-only access to the index
called db_mysql.

sg_roles.yml

connector_user:
 cluster:
 - CLUSTER_INTERNAL_FEDERATE
 index_permissions:
 - index_patterns:
 - 'db_mysql'
 allowed_actions:
 - READ
 - VIEW_INDEX_METADATA

The following is an example of a User role called logs_viewer that can read-only multiple indices
that are prefixed with logstash-.

sg_roles.yml

logs_viewer:
 index_permissions:
 - index_patterns:
 - 'logstash-*'
 allowed_actions:
 - READ
 - VIEW_INDEX_METADATA

Example of configuring Elastic X-Pack

This example implements the generic concepts presented in Configuring security for Siren Federate
using Elastic X-Pack.

22

Before you begin, see the Elastic X-Pack documentation and the introduction on Configuring
security for Siren Federate.

Configuring roles

Elastic X-Pack uses roles to define permissions, or Elastic X-Pack privileges, on action for the
cluster and indices. The users are assigned to one of more roles. See the Elastic X-Pack
documentation on how to assign users to roles.

The System role

The following is an example of a System role that can manage internal Siren Federate indices.

To configure an Elastic X-Pack system role for your Siren Federate instance, apply the following role
settings:

{
 "federate_system": {
 "cluster": [
 "cluster:internal/federate/*",
 "cluster:admin/federate/*",
 "cluster:monitor/*"
],
 "indices": [
 {
 "names": [
 "/\\.siren.*/"
],
 "privileges": [
 "all"
]
 },
 {
 "names": [
 "*"
],
 "privileges": [
 "indices:monitor/*",
 "indices:admin/*",
 "indices:data/read*",
 "indices:data/write*"
]
 }
]
 }
}

The Admin role

This is an example of an Admin role that can manage the license, datasources, virtual indices, and

23

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/elasticsearch-security.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.16//configuring-security.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.16//configuring-security.html

the ingestion jobs.

{
 "federate_admin": {
 "cluster": [
 "cluster:internal/federate/*",
 "cluster:admin/federate/*",
 "cluster:monitor/*",
 "cluster:admin/xpack/security/*"
],
 "indices": [
 {
 "names": [
 "*"
],
 "privileges": [
 "indices:monitor/*",
 "indices:admin/*",
 "indices:data/read*"
]
 }
]
 }
}

The User role

This is an example of a User role that has read-only access to indices that are prefixed with
logstash-.

24

{
 "federate_user": {
 "cluster": [
 "cluster:internal/federate/*"
],
 "indices": [
 {
 "names": [
 "logstash-*"
],
 "privileges": [
 "indices:data/read*",
 "indices:admin/aliases/get",
 "indices:admin/aliases/exists",
 "indices:admin/get",
 "indices:admin/exists",
 "indices:admin/mappings/fields/get*",
 "indices:admin/mappings/get*",
 "indices:admin/mappings/federate/connector/get*",
 "indices:admin/mappings/federate/connector/fields/get*",
 "indices:admin/types/exists",
 "indices:admin/validate/query",
 "indices:monitor/settings/get",
 "indices:admin/template/get"
]
 }
]
 }
}

The following is an example of a User role called connector_user with read-only access to the index
called db_mysql.

25

{
 "connector_user":{
 "cluster":[
 "cluster:internal/federate/*"
],
 "indices":[
 {
 "names":[
 "db_mysql"
],
 "privileges":[
 "indices:data/read*",
 "indices:admin/aliases/get",
 "indices:admin/aliases/exists",
 "indices:admin/get",
 "indices:admin/exists",
 "indices:admin/mappings/fields/get*",
 "indices:admin/mappings/get*",
 "indices:admin/mappings/federate/connector/get*",
 "indices:admin/mappings/federate/connector/fields/get*",
 "indices:admin/types/exists",
 "indices:admin/validate/query",
 "indices:monitor/settings/get",
 "indices:admin/template/get"
]
 }
]
 }
}

Connecting to remote datasources
The Siren Federate plugin offers two ways of interacting with data from external sources. It is
possible to query external data directly by using virtual indices, or indirectly by using reflections. A
datasource is either an Elasticsearch cluster or a JDBC database.

After a remote datasource is configured, an analyst who is using Siren Investigate can create
dashboards by directly querying the remote datasources and displaying the resulting data
alongside Elasticsearch data.

A remote Elasticsearch datasource causes the system to consider remote indices as local ones;
that is, as virtual indices.

A JDBC datasource allows you to define an external database so that a view of the data can be
created by ingesting some of its data into an Elasticsearch index.

Datasources and virtual indices can be managed by using the REST API.

26

Settings for remote datasources

The Siren Federate plugin stores the datasource configuration in two Elasticsearch indices:

• .siren-federate-datasources: The index that is used to store the JDBC configuration parameters
of remote datasources.

• .siren-federate-indices: The index that is used to store the configuration parameters of virtual
indices.

Other indices are also used for different features:

• .siren-federate-ingestions: The index that is used to store the ingestion configurations.

• .siren-federate-joblogs: The index that is used to store logs of ingestion jobs.

The Siren Federate Connector module supports the datasource node configuration settings. For
more information, see the Connector module .

Virtual indices

After you create an Elasticsearch datasource with Siren Federate, you create virtual indices to map
external indices.

How do you query virtual indices?

Virtual indices can be queried by using one of the following APIs:

• Standard Elasticsearch API: Allows you to query a virtual index as if it were a standard
Elasticsearch index. However, note that this method does not support joins.

• Siren Federate API: Allows you to use the join query clause on virtual indices. The Siren
Federate query planner pushes down to the remote datasources the computation of query
operators such as filters, aggregations, and, if the Federate plugin is installed on the remote
datasource, joins.

Siren Federate supports sophisticated join capabilities across both real indices and virtual indices.

There are three kinds of join operations:

• Joins involving indices within the same external datasource: If the Siren Federate plugin is
installed on the datasource, Siren Federate will simply push down the joins to the remote. If the
plugin isn’t installed, then the cross back-end join operation is used. The performance and
scalability depends on the datasource that Siren Federate is connected to.

• Cross back-end joins (external datasource to external datasource, external datasource to
Elasticsearch): The scalability of this operation is, in its current version, quite high from an
external datasource to Elasticsearch, while limited in the opposite direction. Improvements are
planned in future versions.

• Joins across indices that are within the same Elasticsearch cluster. These are extremely scalable.
Siren Federate augments existing Elasticsearch installations with an in-memory distributed
computational layer. Search operations are pushed down to the Elasticsearch indices and then

27

search results are distributed across the available Elasticsearch nodes for distributed join
computation. This enables horizontal scaling, which leverages the entire cluster’s CPUs and
memory.

Operations on virtual indices

The Siren Federate plugin supports the following operations on virtual indices:

• get mapping

• get field capabilities

• search

• msearch

• get

• mget

NOTE

Search requests that involve a mixture of virtual and normal Elasticsearch indices,
for example, when using a wildcard, are not supported and will be rejected. It is,
however, possible to issue msearch requests that contain requests on normal
Elasticsearch indices and virtual indices.

WARNING

Elasticsearch index for interoperability with Search Guard and Elastic X-Pack.
If an Elasticsearch index with the same name as the virtual index already
exists and it is not empty, the virtual index creation will fail and the original
Elasticsearch index is not removed.

Known limitations with configuring remote Elasticsearch datasources

The following limitations exist for all connectors:

• A cross back-end join is limited to semi-join.

• A cross back-end join supports only integer keys.

• Cross back-end support has very different scalability according to the direction of the join. A
join that involves sending IDs to a remote system can potentially be hundreds of times less
scalable, to one where the keys are fetched from a remote system.

• Cross cluster searches on virtual indices are not supported.

Configuring a remote Elasticsearch connector

Siren Federate provides the capability to query data from an Elasticsearch cluster through the
remote clusters module and the Siren Federate connector APIs .

NOTE

The remote Elasticsearch cluster does not have the Siren Federate plugin installed.
Therefore Siren Federate cannot push down a join to the remote cluster. Instead,
the computation of the join is done on the local cluster using the broadcast_join
implementation.

28

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/modules-remote-clusters.html

Compatibility with security systems

To execute joins spanning several clusters, set the following cluster- and index-level permissions on
the clusters.

On the local Federate cluster:

• cluster:internal/federate/*

• indices:data/read/mget

• indices:data/read/msearch

• indices:data/read/mtv

• indices:data/read/open_point_in_time

• indices:data/read/close_point_in_time

• indices:data/read*

• indices:admin/template/get

• indices:admin/aliases/get

• indices:admin/aliases/exists

• indices:admin/get

• indices:admin/exists

• indices:admin/mappings/fields/get*

• indices:admin/mappings/get*

• indices:admin/mappings/federate/connector/get*

• indices:admin/mappings/federate/connector/fields/get*

• indices:admin/types/exists

• indices:admin/validate/query

• indices:monitor/settings/get

For the remote ES cluster:

• indices:data/read/mget

• indices:data/read/msearch

• indices:data/read/mtv

• indices:data/read/open_point_in_time

• indices:data/read/close_point_in_time

• indices:admin/template/get

• indices:data/read*

• indices:data/read/search

The remote Elasticsearch connector is compatible with the following security systems:

29

• Search Guard

• Elastic X-Pack

Before you begin

1. Ensure that the remote clusters are configured as described in the Configuring remote clusters
section of the Elasticsearch documentation.

2. Set up the remote Elasticsearch clusters. For example, use the following settings:

curl -X PUT http://localhost:9200/_cluster/settings -H 'Content-type:
application/json' -d '
{
 "persistent": {
 "cluster": {
 "remote": {
 "remotefederate": {
 "seeds": [
 "127.0.0.1:9330"
]
 }
 }
 }
 }
}
'

Procedure

In this procedure, we are using the example of a remote Elasticsearch cluster called
remoteelasticsearch, which contains indices called logs-2019.01, logs-2019.02, …, logs-2019.12, and
so on.

1. Define the datasource as an alias to the remote Elasticsearch cluster, by using the Siren Federate
datasource API as follows:

curl -X PUT http://localhost:9200/_siren/connector/datasource/remoteelasticsearchds
-H 'Content-type: application/json' -d '
 {
 "elastic": {
 "alias": "remoteelasticsearch"
 }
 }
 '

2. Define a virtual index on the coordinator cluster that matches the wildcard index pattern logs-
*, by using the <<modules/siren-federate/pages/connector-apis.adoc#siren-federate-connector-
virtual-indices-api,Siren Federate virtual index API> as follows:

30

https://docs.search-guard.com
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-security.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/modules-remote-clusters.html#configuring-remote-clusters

curl -X PUT http://localhost:9200/_siren/connector/index/logsvi -H 'Content-type:
application/json' -d '
{
 "datasource": "remoteelasticsearchds",
 "resource": "logs-*",
 "key": "_id"
}
'

3. Execute a join query. For example, the coordinator cluster contains an index called machines,
which contains information about IP addresses on machines of interest. To find out about the
logs that are associated to these machines, execute the following Federate join query:

curl -X GET http://localhost:9200/siren/logsvi/_search -H 'Content-Type:
application/json' -d '
{
 "query": {
 "join": {
 "indices": [
 "machines"
],
 "on": [
 "logs_ip_hash",
 "machines_ip_hash"
],
 "request": {
 "query": {
 "match_all": {

 }
 }
 }
 }
 }
}
'

logs_ip_hash is the IP field in the index logsvi and machines_ip_hash is the IP field in the index
machines.

The API returns the following response:

31

{
 "took": 150,
 "timed_out": false,
 "hits": {
 "total" : {
 "value": 1,
 "relation": "eq"
 },
 "max_score": 1,
 "hits": [
 {
 "_index": "logs-2019-11-12",
 "_id": "0",
 "_score": 2,
 "_source": {
 "date": "2019-11-12T12:12:12",
 "message": "trying out Siren"
 }
 }
]
 }
}

Known limitations for the Federate connector with a remote Elasticsearch cluster

To use Siren Federate with a remote Elasticsearch cluster, a coordinator Federate cluster must run
version 7.11.0.-23.0 or later.

Configuring a remote Federate connector

Siren Federate provides the capability to query data from a Federate cluster. through the remote
clusters module, and the Siren Federate connector APIs .

Compatibility with security systems

To execute joins spanning several Federate clusters, set the following cluster- and index-level
permissions on the clusters:

• cluster:internal/federate/*

• indices:data/read/mget

• indices:data/read/msearch

• indices:data/read/mtv

• indices:data/read/open_point_in_time

• indices:data/read/close_point_in_time

• indices:data/read*

• indices:admin/template/get

32

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/modules-remote-clusters.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/modules-remote-clusters.html

• indices:admin/aliases/get

• indices:admin/aliases/exists

• indices:admin/get

• indices:admin/exists

• indices:admin/mappings/fields/get*

• indices:admin/mappings/get*

• indices:admin/mappings/federate/connector/get*

• indices:admin/mappings/federate/connector/fields/get*

• indices:admin/types/exists

• indices:admin/validate/query

• indices:monitor/settings/get

The remote Federate connector is compatible with the following security systems:

• Search Guard

• Elastic X-Pack

Before you begin

1. Ensure that the remote clusters are configured as described in the Configuring remote clusters
section of the Elasticsearch documentation.

2. Install the Siren Federate plugin on the remote clusters.

3. Set up the remote Federate clusters. For example, use the following settings:

curl -X PUT http://localhost:9200/_cluster/settings -H 'Content-type:
application/json' -d '
{
 "persistent": {
 "cluster": {
 "remote": {
 "remotefederate": {
 "seeds": [
 "127.0.0.1:9330"
]
 }
 }
 }
 }
}
'

33

https://docs.search-guard.com
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-security.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/modules-remote-clusters.html#configuring-remote-clusters

Procedure

In this procedure, we are using the example of a remote Federate cluster called remotefederate,
which contains indices called logs-2019.01, logs-2019.02, …, logs-2019.12, and so on.

1. Define the datasource as an alias to the remote Federate cluster, by using the Siren Federate
datasource API as follows:

curl -X PUT http://localhost:9200/_siren/connector/datasource/remotefederateds -H
'Content-type: application/json' -d '
 {
 "federate": {
 "alias": "remotefederate"
 }
 }
 '

2. Define a virtual index on the coordinator cluster that matches the wildcard index pattern logs-
*, by using the <<modules/siren-federate/pages/connector-apis.adoc#siren-federate-connector-
virtual-indices-api,Siren Federate virtual index API> as follows:

curl -X PUT http://localhost:9200/_siren/connector/index/logsvi -H 'Content-type:
application/json' -d '
{
 "datasource": "remotefederateds",
 "resource": "logs-*",
 "key": "_id"
}
'

3. Execute a join query. For example, the coordinator cluster contains an index called machines,
which contains information about IP addresses on machines of interest. To find out about the
logs that are associated to these machines, execute the following Federate join query:

34

curl -X GET http://localhost:9200/siren/logsvi/_search -H 'Content-Type:
application/json' -d '
{
 "query": {
 "join": {
 "indices": [
 "machines"
],
 "on": [
 "logs_ip_hash",
 "machines_ip_hash"
],
 "request": {
 "query": {
 "match_all": {

 }
 }
 }
 }
 }
}
'

logs_ip_hash is the IP field in the index logsvi and machines_ip_hash is the IP field in the index
machines.

The API returns the following response:

35

{
 "took": 150,
 "timed_out": false,
 "hits": {
 "total" : {
 "value": 1,
 "relation": "eq"
 },
 "max_score": 1,
 "hits": [
 {
 "_index": "logs-2019-11-12",
 "_id": "0",
 "_score": 2,
 "_source": {
 "date": "2019-11-12T12:12:12",
 "message": "trying out Siren"
 }
 }
]
 }
}

Known limitations for the Federate connector

To use Siren Federate with a remote Federate cluster, a coordinator Federate cluster must run
version 7.7.1-20.0 or later, and the remote Federate cluster must run Siren Federate version 7.7.1-
20.0 or later.

Troubleshooting datasources

If you experience a problem while configuring remote datasources, see the following information
for a possible solution.

I cannot reconnect to a datasource by hostname after a DNS update

When the Java security manager is enabled, the JVM will cache name resolutions indefinitely. If the
system that you are connecting to uses round-robin DNS or if the IP address of the system changes
frequently, you will need to modify the following Java Security Policy properties:

• networkaddress.cache.ttl: The number of seconds to cache a successful DNS lookup. Defaults to
-1 (forever).

• networkaddress.cache.negative.ttl: The number of seconds to cache an unsuccessful DNS
lookup. Defaults to 10. Set this value to 0 to avoid caching.

36

https://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html

Configuring joins by type
Siren Federate offers three join strategies: the hash join, the broadcast join, and the index join.

By default, the Siren Federate query planner selects the most cost-effective join strategy based on
the scenario, but you can also manually select the strategy that you prefer.

About join strategies

• The hash join is a fully-distributed join strategy that is designed to join a large number of
documents. It scales horizontally (based on the number of data nodes) and vertically (based on
the number of CPU cores).

• The broadcast join is the strategy to use when you are joining a large set of documents (the
parent set) with a small to medium set of documents (the child set).

• The index join is the strategy to use when you are joining a large set of documents (the parent
set) with a small set of documents (the child set).

When to use a hash join

The hash join is best suited to scenarios where both parent and child sets are large or when the
child set is large. A large set is, for example, a set of ten million tuples or more.

The hash join allows the processing of large amounts of data with minimal cost to the network
performance.

Therefore, the hash join is useful in a cybersecurity use case, for example, where irregular machine
events are being investigated.

NOTE

A tuple is a single row composed of one or more columns, where one column is
mapped to one field of a document. For example, a tuple could be a row composed
of two elements such as the document identifier and the key value of the join
condition. If a document has a multi-valued field, this will generate as many tuples
as there are values.

For more term definitions, see the Glossary.

When to use a broadcast join

The broadcast join is best suited to scenarios where the child set of documents (also known as the
right-side set) is small or medium (up to a few millions).

Therefore, the broadcast join is useful in a commercial use case, for example, where the sales of a
small number of selected products are being observed.

When to use an index join

The index join is best suited to scenarios where the child set of documents (also known as the right-
side set) is small (up to a few thousands keys).

37

Therefore, the index join is useful in a social graph use case, for example, where you start with one
person and try to expand his/her relations.

Partitioning data

The difference between the broadcast join and the hash join lies in their approach to data
partitioning.

In the following diagram, the broadcast join is shown sending data from the child set of documents
(Index B) to every data node in the cluster. Therefore, each data node has the exact same input data
as every other data node.

Data from the child set of documents (Index B) is sent only to data nodes that host shards of the
parent set of documents (Index A). In addition, if data needs to be sent to two shards that are hosted
on the same node, for example, a primary shard and a replica of Index A, then the data is sent only
once to that node.

In a hash join, data from both sides is partitioned over the key and a data node receives only data
with the same hash key.

To summarize, the hash join scales gracefully to process large amounts of data as the number of
data nodes increases, thanks to the hash partitioning of the data.

In contrast, the broadcast and index join do not scale well because:

• child data is duplicated across all of the nodes in the cluster, increasing network cost; and

• a receiving node is subject to higher memory cost as the data increases.

Table 1. What happens during the phases of a join?

38

Join strategy Shuffle phase (data
partitioning)

Build phase Probe phase

Broadcast join Copies of the input data
(the child set of
documents) are sent to
every data node.

A in-memory hash
table is built over the
input data.

The doc_values of the
parent set of
documents are scanned
and each value is
probed against the
hash table to find
matches.

Hash join Data from both sides is
partitioned over the
key and a data node
receives only data with
the same hash key.

An in-memory hash
table is built from one
of the relations in the
partition.

The second relation is
scanned and each value
is probed against the
hash table to find
matches.

Index join Copies of the input data
(the child set of
documents) are sent to
every data node.

An in-memory hash
table is built over the
input data.

Each value is probed
against the dictionary
of the parent set to find
matches.

Impact on performance

With a broadcast or an index join, uploading data to every data node in the cluster has an impact
on the network load, the more data and nodes there are. In addition, the memory overhead on a
node is linear with the size of the child set. With the broadcast join, doc_values of the joined field of
the parent set is scanned, while with the index join we perform a dictionary lookup. Indeed, with a
small number of terms, the lookup is more efficient.

For this reason, the Siren Query Planner performs a cost analysis to select the more suitable join
strategy.

With a hash join, apart from the network load, the fact that the data is partitioned over the cluster
also has an impact on the amount of memory needed. However, the created hash table is often
smaller.

TIP
It is possible to change the parallelization of the hash join computation by using the
siren.io.pipeline.hash.partitions_per_node setting.

Example of the network, memory, and I/O cost of joins

A three-node cluster contains two indices with fields fieldA and fieldB, each field containing 15
million values. The field fieldA is a field from the parent set, and fieldB is a field from the child set.

In addition, each index has three primary shards and no replica. Consequently, one node has one
shard of the index.

Hash and broadcast joins are two join strategies that scan the doc_values of joined fields. This scan
is divided into the three categories that are most impacted: . Network: This exhibits the cost of
transferring data between nodes; . I/O: This highlights the cost of reading data from the disk; and .

39

Memory: This indicates the memory requirements when joining data.

Hash join

To join both indices over fields fieldA and fieldB with the hash join, the cost would be as follows:

• I/O cost: The system scans doc_values of each index before the shuffling phase. This represents a
sequential scan of 15M + 15M = 30M values or 30M / 3 = 10M per node.

• Network cost: The system shuffles each index across the available data nodes. This represents a
network transfer of 15M + 15M = 30M values across the cluster.

• Memory cost: The system stores the projected data in (off-heap) memory from both child and
parent sets. The total number of values stored in memory across the cluster is 15M + 15M = 30M,
since there is no duplication when compared to the broadcast join. This represents 30M / 3 =
10M values per node.

Broadcast join

To join both indices over fields fieldA and fieldB with the broadcast join, the cost would be as
follows:

• I/O cost: The system scans doc_values of each index and reads 15M + 15M = 30M values from
both sides of the join.

• Network cost: The system shuffles the child index across data nodes hosting shards of the
parent set. This represents a network transfer of 15M * 3 = 45M values across the cluster.

• Memory cost: The system stores the projected data in (off-heap) memory. The number of values
stored in off-heap memory is 15M on each node (values from fieldB), which are also loaded into
a hash table. This represents 30M on each node, thus a total of 90M values loaded into memory
across the cluster.

Index join

To join both indices over fields fieldA and fieldB with the index join, the cost would be as follows:

• I/O cost: The system scans doc_values of the child set and reads 15M values. The system also
performs 15M dictionary lookups on the parent index.

• Network cost: The system shuffles the child index across data nodes hosting shards of the
parent set. This represents a network transfer of 15M * 3 = 45M values across the cluster.

• Memory cost: The system stores the projected data in (off-heap) memory. The number of values
stored in off-heap memory is 15M on each node (values from fieldB), which are also loaded into
a hash table. This represents 30M on each node, thus a total of 90M values loaded into memory
across the cluster.

From this example, we can determine that the hash join strategy is less expensive on the system’s
operations.

While the broadcast join outshines the hash join when the child index is small (since the parent
index is not partitioned over the cluster), in the above case, the broadcast join does not scale very
well because:

40

• the child data is duplicated across all of the nodes in the cluster, increasing network cost; and

• a receiving node is subject to higher memory cost as the data increases.

In contrast, the hash join scales gracefully to process large amounts of data as the number of data
nodes increases, thanks to the hash partitioning of the data.

Before you begin

• Firstly, for both the broadcast and hash join strategies, you must enable doc_values for the
joined fields. For the index join, only the join field of the child set requires doc_values to be
enabled.

Fields that have doc_values enabled use a columnar data structure for storage, which Siren
Federate leverages for efficient scanning.

If doc_values are not enabled, the join fails, stating that the field was not indexed with
doc_values.

• Secondly, ensure that the data type of the joined fields across index patterns is the same. For
example, if you try to join a field from the pattern index*, but the field is an integer in index1
while it is a keyword in index2, an error will result. The following primitive data types are
supported:

◦ keyword

◦ long

◦ integer

◦ double

◦ float

◦ short

◦ half_float

◦ byte

◦ date

◦ IP

◦ binary

Procedure

At query time, specify the join type by entering either HASH_JOIN, BROADCAST_JOIN or INDEX_JOIN in the
type parameter of the join query.

For more information, see Query DSL.

The search API allows you to execute a search query and get back search hits that match the query.
For example, use the following request:

` curl -XGET 'http://localhost:9200/siren/<INDEX>/_search' `

41

https://www.elastic.co/guide/en/elasticsearch/reference/current/doc-values.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/doc-values.html

You can apply a join query and specify the join type that you want to use. For example, the
following query specifies a hash join as its type:

curl -H 'Content-Type: application/json' -XGET
'http://localhost:9200/siren/target_index/_search' -d '
{
 "query" : {
 "join" : {
 "type": "HASH_JOIN",
 "indices" : ["source_index"],
 "on" : ["foreign_key", "id"],
 "request" : { ①
 "query" : {
 "terms" : {
 "tag" : ["aaa"]
 }
 }
 }
 }
 }
}
'

① The search request that will be used to filter out the source set (that is, the source_index).

For more information about the join query, see Query DSL.

Federate Modules

Planner
The planner module is responsible in parsing a (multi) search request and generating a logical
model. This logical model is then optimised by leveraging the rule-based Hep engine from Apache
Calcite. The outcome is a physical query plan, which is then executed. The physical query plan is a
Directed Acyclic Graph workflow composed of individual computing steps. The workflow is
executed as a Job and the individual computing steps are executed as Tasks. We can therefore map
one (multi) search request to a single job.

siren.planner.pool.job.size

Control the maximum number of concurrent jobs being executed per node. Defaults to 1.

siren.planner.pool.job.queue_size

Control the size of the queue for pending jobs per node. Defaults to 100.

siren.planner.pool.tasks_per_job.size

Control the maximum number of concurrent tasks being executed per job. Defaults to 3.

42

siren.planner.volcano.use_query

Use contextual queries when computing statistics. If false, computed statistics are effectively
"global" to the index. Defaults to false.

siren.planner.volcano.cache.enable

Enable or disable a caching layer over Elasticsearch requests sent during query optimizations in
order to gather statistics. Defaults to true.

siren.planner.volcano.cache.refresh_interval

The minimum interval time for refreshing the cached response of a statistics-gathering request.
The time unit is in minutes and defaults to 60 minutes.

siren.planner.volcano.cache.maximum_size

The maximum number of requests response that can be cached. Defaults to 1,000,000.

siren.planner.field.metadata.cache.maximum_size

The maximum number of field metadata requests response that can be cached. Defaults to
100,000. Setting the value to 0 will disable the cache.

Memory
The memory module is responsible for allocating and managing chunks of off-heap memory.

Memory management

In Siren Federate, data is encoded in a columnar format and stored off-heap. This method of
memory management reduces the pressure on the Java virtual machine (JVM) and allows fast and
efficient analytical operations.

Data is read directly from the off-heap storage and decoded on-the-fly by using zero-serialization
and zero-copy memory. Zero-serialization improves performance by removing any serialization
overhead, while zero-copy memory reduces CPU cycles and memory bandwidth overhead.

Siren Federate’s memory management allows for granular control over the amount of off-heap
memory that can be allocated per node, per search request, and per query operator, while having
the inherent ability to terminate queries when the off heap memory usage is reaching its
configured limit.

In addition, the garbage collector automatically releases intermediate computation results and
recovers the off-heap memory to decrease the impact on memory.

Off-heap storage is used only on the data nodes; master-only and coordinator nodes do not use off-
heap memory.

Hierarchical model

The allocated memory is managed in a hierarchical model.

• The root allocator is managing the memory allocation on a node level, and can have one or

43

more job allocators.

• A job allocator is created for each job (that is, a Siren Federate search request) and manages the
memory allocation on a job level. A job can have one or more task allocators.

• A task allocator is created for each task of a job (that is, a Siren Federate query operator) and
manages the memory allocation on a task level.

Each allocator specifies a limit for how much off-heap memory it can use.

siren.memory.root.limit

Limit in bytes for the root allocator. Defaults to two-thirds of the maximum direct memory size
of the JVM.

siren.memory.job.limit

Limit in bytes for the job allocator. Defaults to siren.memory.root.limit.

siren.memory.task.limit

Limit in bytes for the task allocator. Defaults to siren.memory.job.limit.

By default, the job limit is equal to the root limit, and the task limit is equal to the job limit. This
facilitates a simple configuration in most common scenarios where only the root limit must be
configured.

For more advanced scenarios, for example, when there are multiple concurrent users, you might
need to tune the job and task limits to avoid errors. For example, a user executes a search request
that consumes all of the available off-heap memory at the root level, leaving no memory for the
search requests that are executed by other users.

IMPORTANT
As a rule of thumb, do not give more than half of the remaining OS memory
to the Siren root allocator. Leave some memory for the OS cache and to cater
for Netty’s memory management overhead.

For example, if Elasticsearch is configured with a 32GB heap on a machine with 64GB of RAM, this
leaves 32GB to the OS. The maximum limit that one could set for the root allocator should be 16GB.

For more information, see Configuring off-heap memory.

IO
The IO module is responsible for encoding, decoding and shuffling data across the nodes in the
cluster.

Tuple Collector

This module introduces the concept of Tuple Collectors which are responsible for collecting tuples
created by a SearchProject or Join task and shuffling them across the shards or nodes in the cluster.

NOTE The Tuple Collector is deprecated and will be replaced by the Vectorized Pipeline.

44

Tuples collected will be transferred in one or more packets. The size of a packet has an impact on
the resources. Small packets will take less memory but will increase cpu times on the receiver side
since it will have to reconstruct a tuple collection from many small packets. Large packets will
reduce cpu usage on the receiver side, but at the cost of higher memory usage on the collector side
and longer network transfer latency. The size of a packet can be configured with the following
setting:

siren.io.tuple.collector.packet_size

The size in bytes of a data packet sent by a collector. Defaults to 8MB.

When using the Hash Join, the collector will use a hash partitioner strategy to create small data
partitions. Creating multiple small data partitions helps in parallelizing the join computation, as
each worker thread for the join task will be able to pick and join one partition independently of the
others. Setting the number of data partitions per node to 1 will cancel any parallelization. The
number of data partitions per node can be configured with the following setting:

siren.io.tuple.collector.hash.partitions_per_node

The number of partitions per node. The number of partitions must be a power of 2. Defaults to
32.

siren.io.tuple.collector.hash.number_of_nodes

The number of data nodes that are used during the join computation. This defaults to all
available nodes.

Vectorized Pipeline

This module introduces the concept of Vectorized Pipeline which is responsible for processing and
collecting tuples created by a SearchProject or Join task and shuffling them across the shards or
nodes in the cluster.

Tuples collected will be transferred in one or more packets. The size of a packet has an impact on
the resources. Small packets will take less memory but will increase cpu times on the receiver side
since it will have to reconstruct a tuple collection from many small packets. Large packets will
reduce cpu usage on the receiver side, but at the cost of higher memory usage on the collector side
and longer network transfer latency. The size of a packet can be configured with the following
setting:

siren.io.pipeline.max_packet_size

The maximum size in bytes for a data packet. Must be a power of 2. Defaults to 8MB.

siren.io.pipeline.hash.partitions_per_node

The number of partitions per node. Must be a power of 2. Defaults to 32.

siren.io.pipeline.batch_size

The number of rows in a batch. Must be a power of two. Defaults to 65536.

siren.io.pipeline.hash.number_of_nodes

The number of data nodes that are used during the join computation. Defaults to all available
nodes.

45

Thread Pools
Siren Federate introduces new thread pools:

federate.planner

For the query planner operations. Thread pool type is fixed_auto_queue_size with a size of 2 * #
of available_processors, and initial queue_size of 1000.

federate.data

For the data operations (create, upload, delete). Thread pool type is scaling.

federate.task.worker

For task worker threads. Thread pool type is fixed_auto_queue_size with a size of max((# of
available_processors) - 1, 1), and initial queue_size of 1000.

federate.connector.query

For connector query operations. Thread pool type is fixed with a size of int((# of
available_processors * 3) / 2) + 1, and queue size 1000.

federate.connector.jobs.management

For connector job management operations like starting and stopping ingestion jobs. Thread pool
type is scaling.

federate.connector.jobs

For job worker threads like ingestion jobs and related concurrent indexing bulk requests.
Thread pool type is fixed with a size of 4, and a queue_size with 100.

federate.connector.internal

For connector internal cluster communications. Thread pool type is scaling.

Query Cache
Siren Federate extends the Elasticsearch’s query cache:

index.federate.queries.cache.enabled

Enable (default) or disable the Siren Federate query cache, used for caching join queries.

federate.indices.queries.cache.size

Controls the memory size for the filter cache, defaults to 10%.

federate.indices.queries.cache.count

Controls the maximum number of entries in the cache, defaults to 1,000.

Connector
The Federate Connector module supports the following node configuration settings, which can be
set on JDBC-enabled nodes:

46

siren.connector.datasources.index

The index in which Federate will store datasource configurations.

siren.connector.query.project_max_size

A setting that controls how much data flows between datasources or between a datasource and
the Elasticsearch cluster. Defaults to 50000 records transferred between systems consisting in the
projected values, e.g., joined values.

siren.connector.siren.timeout.connection

the maximum amount of seconds to wait when establishing or acquiring a JDBC connection (30
by default).

siren.connector.timeout.query

the maximum execution time for JDBC queries, in seconds (30 by default).

siren.connector.enable_union_aggregations

true by default, can be set to false to disable the use of unions in nested aggregations.

siren.connector.query.max_bucket_queries

the maximum number of JDBC queries that will be generated to compute aggregation buckets.
Defaults to 500.

Search APIs
Siren Federate introduces the following new search actions:

• /siren/<INDEX>/_search replaces the /<INDEX>/_search Elasticsearch action; and

• /siren/<INDEX>/_msearch replaces the /<INDEX>/_msearch Elasticsearch action.

Both actions are extensions of the original Elasticsearch actions and therefore support the same
API.

You must use these actions with the join query clause, as the join query clause is not supported by
the original Elasticsearch actions.

Permissions: To use the APIs that are listed in this section, ensure that the cluster-level
wildcard action cluster:internal/federate/* is granted by the security system.

Search API
The search API allows you to execute a search query and get back search hits that match the query.

Request

curl -XGET 'http://localhost:9200/siren/<INDEX>/_search'

curl -XPOST 'http://localhost:9200/siren/<INDEX>/_search'

47

curl -XGET 'http://localhost:9200/siren/_search'

curl -XPOST 'http://localhost:9200/siren/_search'

Path parameter

<index>

(Optional, string) Comma-separated list or wildcard expression of index names used to limit the
request.

Permissions: To use this API, ensure that the index-level wildcard action
indices:data/read/federate/search* and the indices:data/read/federate/planner/search
action are granted by the security system.

Multi Search API
The multi search API allows to execute several search requests within the same API.

Request

curl -XGET 'http://localhost:9200/siren/<INDEX>/_msearch'

curl -XPOST 'http://localhost:9200/siren/<INDEX>/_msearch'

curl -XGET 'http://localhost:9200/siren/_msearch'

curl -XPOST 'http://localhost:9200/siren/_msearch'

Path parameter

<index>

(Optional, string) Comma-separated list or wildcard expression of index names used to limit the
request.

Permissions: To use this API, ensure that the index-level wildcard action
indices:data/read/federate/search* and the indices:data/read/federate/planner/msearch
action are granted by the security system.

Search Request
The syntax for the body of the search request is identical to the one supported by the Elasticsearch
search API, with the additional support for the join query clause in the Query DSL.

Parameters

In addition to the parameters supported by the Elasticsearch search API, the Federate search API

48

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/search-search.html

introduces the following additional parameters:

task_timeout A task timeout, bounding a task to be executed within the specified time value
(in milliseconds) and returns with the values accumulated up to that point
when expired. Defaults to no timeout (-1).

debug To retrieve debug information from the query planner. Defaults to false.

Taking advantage of the join query cache

The join query cache is responsible for caching the results of a join query clause at the shard level.
If an index has one or more replicas, it is recommended that you specify the preference parameter
of the search request.

If no preference parameter is specified, the search request is processed against a random selection
of shards. In such a scenario, the join query cache on every shard may differ and the chance of
having a positive cache hit decreases.

For example, it is common practice to specify a user session ID as preference, so that the same set of
shards are selected across the search requests of a same user.

Search Response
The response returned by Federate’s search API is similar to the response returned by
Elasticsearch’s search API. It extends the response with a planner object which includes information
about the query plan execution.

is_pruned

The request response may have been truncated for several reasons and the flag is_pruned indicates
that the search results are incomplete in the following cases:

• If the task_timeout parameter was set.

• If a shard failed.

query_plan

If the debug parameter is enabled, it will also include detailed information and statistics about the
query plan execution within a query_plan object.

If the debug parameter was disabled and the response was truncated, then a simplified query plan is
displayed with information detailing the causes of the truncation.

49

https://www.elastic.co/guide/en/elasticsearch/reference/7.16//search-search.html#search-preference
https://www.elastic.co/guide/en/elasticsearch/reference/7.16//search-search.html#search-preference

{
 "_shards": {
 "failed": 0,
 "skipped": 0,
 "successful": 5,
 "total": 5
 },
 "hits": {
 "hits": [],
 "max_score": 0.0,
 "total": 0
 },
 "planner": {
 "is_pruned": true,
 "is_truncated": true,
 "node": "AYex2HdPTu-cwkqwaquH1w",
 "query_plan": {
 "children": [
 {
 "failures": [
 {
 "reason": "Unable to allocate buffer of size 2097152 due
to memory limit. Current allocation: 0",
 "type": "out_of_memory_exception"
 }
],
 "type": "SearchTaskBroadcastRequest"
 }
],
 "type": "SearchJoinRequest"
 },
 "timestamp": {
 "start_in_millis": 1579776194845,
 "stop_in_millis": 1579776195243,
 "took_in_millis": 398
 },
 "took_in_millis": 398
 },
 "timed_out": false,
 "took": 19
}

NOTE
The is_pruned flag is deprecated and will be renamed to is_truncated in version
20.0.

Cancelling a request
A search or a multi search request can be cancelled explicitely by a user. In order to do so, you need

50

to pass a X-Opaque-Id header which is used to identify the request. The endpoint for cancelling a
request is /_siren/job/<ID>/_cancel. By default, the cancel request will wait for all tasks associated
to the search to be cancelled. This can be disabled by passing false to the boolean parameter
wait_for_completion.

Permissions: To use this API, ensure that the cluster-level action
cluster:admin/federate/job/cancel is granted by the security system.

Usage

Let’s identify a search request with the name my-request:

$ curl -H "Content-Type: application/json" -H "X-Opaque-Id: my-request"
'http://localhost:9200/siren/_search'

Then to cancel it, issue a request as follows:

$ curl -XPOST -H "Content-Type: application/json" 'localhost:9200/_siren/job/my-
request/_cancel'

If successful, the response will acknowledge the request and give a listing of the cancelled tasks:

{
 "acknowledged" : true,
 "tasks" : [
 {
 "node" : "5ILUA44uSee-VxsBsNbsNA",
 "id" : 947,
 "type" : "transport",
 "action" : "indices:siren/plan",
 "description" : "federate query",
 "start_time_in_millis" : 1524815599457,
 "running_time_in_nanos" : 199131478,
 "cancellable" : true,
 "headers" : {
 "X-Opaque-Id" : "my-request"
 }
 }
]
}

Validating a request
The explain API provides information about the query planning of a search request, without
executing it.

51

Request

curl -XGET 'http://localhost:9200/siren/<INDEX>/_explain'

curl -XPOST 'http://localhost:9200/siren/<INDEX>/_explain'

curl -XGET 'http://localhost:9200/siren/_explain'

curl -XPOST 'http://localhost:9200/siren/_explain'

Path parameter

<index>

(Optional, string) A comma-separated list or a wildcard expression of index names that is used to
limit the request.

Permissions: To use this API, ensure that the index-level action
indices:data/read/federate/planner/explain is granted by the security system.

Response

The explain response contains the id of the coordinator node and the physical query plan of the
search request.

The query plan is a directed acyclic graph, where each node represents a task that is being executed
on the cluster. The graph is represented as a tree to match the JSON data model. Therefore, it might
contain duplicate tasks.

Each task node contains the following information:

type Specifies the physical operator type, for example, SearchJoinRel,
SearchJoinTaskRel, or ParallelHashSemiJoinTaskRel.

is_cached Indicates whether the physical operator is cached or not.

request Represents the associated search request for a Search*Rel; the join condition
for a JoinRel.

row_type Defines the rows that are being projected by the task. A row is composed of
one or more columns. This parameter describes the names and data types
of the columns.

row_count An estimation of the number of rows that will be projected.

cost An estimation of the execution cost of the task. This includes the network
and I/O costs.

52

cumulative_cost An estimation of the cumulative execution cost of the task. It is the sum of
the estimated execution cost of the task and all of its descendants.

When applicable, the cost object also details the costs of the different phases; select and project.
This is the case for SearchJoinRel and SearchJoinTaskRel. For more information about estimating the
execution cost, see Example of the network, memory, and I/O cost of joins.

For more information about the workflow phases, see Distributed join workflow.

Example responses

Hash join

POST /siren/index1/_explain?pretty=true

{
 "query": {
 "join": {
 "indices": [
 "index2"
],
 "type": "HASH_JOIN",
 "on": [
 "foreign_key",
 "id"
],
 "request": {
 "query": {
 "bool": {
 "filter": [
 {
 "term": {
 "tag": {
 "value": "aaa",
 "boost": 1
 }
 }
 }
],
 "adjust_pure_negative": true,
 "boost": 1
 }
 }
 }
 }
 }
}

53

{
 "node": "RC7OM86mQhGoEW4Q3LVXUg",
 "query_plan": {
 "request": "SearchJoinRequest{jobId=395f99f3-e1c0-43cf-9306-9fbb74c33753,
contextIds=SearchLocks{contextIds=[[RC7OM86mQhGoEW4Q3LVXUg][index1][4]=>[jGiaHnYBx7CeZ
FoovdPz][36], [RC7OM86mQhGoEW4Q3LVXUg][index1][6]=>[jmiaHnYBx7CeZFoovdPz][38],
[RC7OM86mQhGoEW4Q3LVXUg][index1][0]=>[iGiaHnYBx7CeZFoovdPy][32],
[RC7OM86mQhGoEW4Q3LVXUg][index1][3]=>[i2iaHnYBx7CeZFoovdPz][35],
[RC7OM86mQhGoEW4Q3LVXUg][index1][5]=>[jWiaHnYBx7CeZFoovdPz][37],
[RC7OM86mQhGoEW4Q3LVXUg][index1][1]=>[iWiaHnYBx7CeZFoovdPy][33],
[RC7OM86mQhGoEW4Q3LVXUg][index1][2]=>[imiaHnYBx7CeZFoovdPz][34]]},
innerRequest=SearchRequest{searchType=QUERY_THEN_FETCH, indices=[index1],
indicesOptions=IndicesOptions[ignore_unavailable=false, allow_no_indices=true,
expand_wildcards_open=true, expand_wildcards_closed=false,
expand_wildcards_hidden=false, allow_aliases_to_multiple_indices=true,
forbid_closed_indices=true, ignore_aliases=false, ignore_throttled=true], types=[],
routing='null', preference='null', requestCache=false, maxConcurrentShardRequests=5,
batchedReduceSize=512, preFilterShardSize=128, allowPartialSearchResults=null,
localClusterAlias=null, getOrCreateAbsoluteStartMillis=-1, ccsMinimizeRoundtrips=true,
source={\"query\":{\"doc_ids\":{\"job_id\":\"395f99f3-e1c0-43cf-9306-9fbb74c33753\",
\"input_data_id\":\"-1296081227--1507322559-247037071\"}}}}}",
 "row_type": [
 "#0: _shard_id JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer)",
 "#1: _segment_id JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Short)",
 "#2: _doc_id JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer)",
 "#3: _score JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Float)",
 "#4: foreign_key MetadataType{digest=JavaType(class
io.siren.federate.core.planner.schema.PlannerType$String) SEARCHABLE AGGREGATABLE}"
],
 "type": "SearchJoinRel",
 "physical_plan":
"rel#254:SearchJoinRel.ELASTICSEARCH(input#0=ParallelHashSemiJoinTaskRel#252,invocatio
n=SearchRequest{id=29a689d0-31b1-4163-8b23-
5c92e1af7c9c},rowType=RecordType(JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer) _shard_id, JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Short) _segment_id, JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer) _doc_id, JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Float) _score,
MetadataType{digest=JavaType(class
io.siren.federate.core.planner.schema.PlannerType$String) SEARCHABLE AGGREGATABLE}
foreign_key),elementType=class [Ljava.lang.Object;)",
 "is_cached": false,
 "row_count": 1,
 "cost": {
 "io": 0,
 "network": 0,
 "project": {

54

 "io": 0,
 "network": 0
 },
 "select": {
 "io": 0,
 "network": 0
 }
 },
 "cumulative_cost": {
 "io": 7,
 "network": 12
 },
 "children": [
 {
 "request": "JoinTaskNodesRequest{jobId=395f99f3-e1c0-43cf-9306-9fbb74c33753,
taskType=ParallelHashSemiJoinTask, left_input_data=1323318367--820606795--
8891252244165294113--786400190, right_input_data=3386-316335040--8907078984324448671--
786400190, output_data_id=-1296081227--1507322559-247037071, projection=[1, 2, 3],
condition=(EQUALS, 0, 0), timeout=-1,
collector={class=SegmentPartitionerTupleCollectorManager,
target=[[RC7OM86mQhGoEW4Q3LVXUg][index1][4], [RC7OM86mQhGoEW4Q3LVXUg][index1][6],
[RC7OM86mQhGoEW4Q3LVXUg][index1][0], [RC7OM86mQhGoEW4Q3LVXUg][index1][3],
[RC7OM86mQhGoEW4Q3LVXUg][index1][5], [RC7OM86mQhGoEW4Q3LVXUg][index1][1],
[RC7OM86mQhGoEW4Q3LVXUg][index1][2]]}}",
 "row_type": [
 "#0: _shard_id JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer)",
 "#1: _segment_id JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Short)",
 "#2: _doc_id JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer)"
],
 "type": "ParallelHashSemiJoinTaskRel",
 "physical_plan":
"rel#252:ParallelHashSemiJoinTaskRel.SIREN(left=SearchJoinTaskRel#247,right=SearchJoin
TaskRel#249,condition==($0, $4),joinType=inner)",
 "is_cached": false,
 "row_count": 1.5,
 "cost": {
 "io": 0,
 "network": 5
 },
 "cumulative_cost": {
 "io": 7,
 "network": 12
 },
 "children": [
 {
 "request": "SearchTaskBroadcastRequest{jobId=395f99f3-e1c0-43cf-9306-
9fbb74c33753, taskType=SearchProjectTask, indices=[index1], types=[],
projection=[foreign_key:LONG:class

55

io.siren.federate.core.planner.schema.PlannerType$Hashed:false, _shard_id:INT:class
io.siren.federate.core.planner.schema.PlannerType$Integer:false,
_segment_id:SHORT:class io.siren.federate.core.planner.schema.PlannerType$Short:false,
_doc_id:INT:class io.siren.federate.core.planner.schema.PlannerType$Integer:false],
collector={class=HashPartitionerTupleCollectorManager, target=[data:true]}, timeout=-
1, output_data_id=1323318367--820606795--8891252244165294113--786400190,
context_ids=SearchLocks{contextIds=[[RC7OM86mQhGoEW4Q3LVXUg][index1][4]=>[jGiaHnYBx7Ce
ZFoovdPz][36], [RC7OM86mQhGoEW4Q3LVXUg][index1][6]=>[jmiaHnYBx7CeZFoovdPz][38],
[RC7OM86mQhGoEW4Q3LVXUg][index1][0]=>[iGiaHnYBx7CeZFoovdPy][32],
[RC7OM86mQhGoEW4Q3LVXUg][index1][3]=>[i2iaHnYBx7CeZFoovdPz][35],
[RC7OM86mQhGoEW4Q3LVXUg][index1][5]=>[jWiaHnYBx7CeZFoovdPz][37],
[RC7OM86mQhGoEW4Q3LVXUg][index1][1]=>[iWiaHnYBx7CeZFoovdPy][33],
[RC7OM86mQhGoEW4Q3LVXUg][index1][2]=>[imiaHnYBx7CeZFoovdPz][34]]},
input_data_ids=[Lio.siren.federate.core.io.data.DataId;@13bdcd3b, source={\n
\"match_all\" : {\n \"boost\" : 1.0\n }\n}}",
 "row_type": [
 "#0: foreign_key MetadataType{digest=JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Hashed) NOT NULL SEARCHABLE
AGGREGATABLE}",
 "#1: _shard_id JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer)",
 "#2: _segment_id JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Short)",
 "#3: _doc_id JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer)"
],
 "type": "SearchJoinTaskRel",
 "physical_plan":
"rel#247:SearchJoinTaskRel.ELASTICSEARCH(invocation=SearchRequest{id=62a60c4d-1c65-
414f-bdd6-4f1fd884cc71},rowType=RecordType(MetadataType{digest=JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Hashed) NOT NULL SEARCHABLE
AGGREGATABLE} foreign_key, JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer) _shard_id, JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Short) _segment_id, JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer) _doc_id),elementType=class
[Ljava.lang.Object;)",
 "is_cached": false,
 "row_count": 5,
 "cost": {
 "io": 5,
 "network": 5,
 "project": {
 "io": 5,
 "network": 5
 },
 "select": {
 "io": 0,
 "network": 0
 }
 },
 "cumulative_cost": {

56

 "io": 5,
 "network": 5
 }
 },
 {
 "request": "SearchTaskBroadcastRequest{jobId=395f99f3-e1c0-43cf-9306-
9fbb74c33753, taskType=SearchProjectTask, indices=[index2], types=[],
projection=[id:LONG:class
io.siren.federate.core.planner.schema.PlannerType$Hashed:false],
collector={class=HashPartitionerTupleCollectorManager, target=[data:true]}, timeout=-
1, output_data_id=3386-316335040--8907078984324448671--786400190,
context_ids=SearchLocks{contextIds=[[RC7OM86mQhGoEW4Q3LVXUg][index2][4]=>[hWiaHnYBx7Ce
ZFoovdPy][29], [RC7OM86mQhGoEW4Q3LVXUg][index2][2]=>[g2iaHnYBx7CeZFoovdPy][27],
[RC7OM86mQhGoEW4Q3LVXUg][index2][0]=>[gWiaHnYBx7CeZFoovdPy][25],
[RC7OM86mQhGoEW4Q3LVXUg][index2][1]=>[gmiaHnYBx7CeZFoovdPy][26],
[RC7OM86mQhGoEW4Q3LVXUg][index2][5]=>[hmiaHnYBx7CeZFoovdPy][30],
[RC7OM86mQhGoEW4Q3LVXUg][index2][3]=>[hGiaHnYBx7CeZFoovdPy][28],
[RC7OM86mQhGoEW4Q3LVXUg][index2][6]=>[h2iaHnYBx7CeZFoovdPy][31]]},
input_data_ids=[Lio.siren.federate.core.io.data.DataId;@1e7af06, source={\n \"bool\"
: {\n \"filter\" : [\n {\n \"term\" : {\n \"tag\" : {\n
\"value\" : \"aaa\",\n \"boost\" : 1.0\n }\n }\n }\n
],\n \"adjust_pure_negative\" : true,\n \"boost\" : 1.0\n }\n}}",
 "row_type": [
 "#0: id MetadataType{digest=JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Hashed) NOT NULL SEARCHABLE
AGGREGATABLE}"
],
 "type": "SearchJoinTaskRel",
 "physical_plan":
"rel#249:SearchJoinTaskRel.ELASTICSEARCH(invocation=SearchRequest{id=4d4024cf-83ec-
4a6a-8d1a-be5b034851fd},rowType=RecordType(MetadataType{digest=JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Hashed) NOT NULL SEARCHABLE
AGGREGATABLE} id),elementType=class [Ljava.lang.Object;)",
 "is_cached": false,
 "row_count": 2,
 "cost": {
 "io": 2,
 "network": 2,
 "project": {
 "io": 2,
 "network": 2
 },
 "select": {
 "io": 0,
 "network": 0
 }
 },
 "cumulative_cost": {
 "io": 2,
 "network": 2
 }

57

 }
]
 }
]
 }
}

Broadcast join

POST /siren/index1/_explain?pretty=true

{
 "query": {
 "join": {
 "indices": [
 "index2"
],
 "type": "BROADCAST_JOIN",
 "on": [
 "foreign_key",
 "id"
],
 "request": {
 "query": {
 "bool": {
 "filter": [
 {
 "term": {
 "tag": {
 "value": "aaa",
 "boost": 1
 }
 }
 }
],
 "adjust_pure_negative": true,
 "boost": 1
 }
 }
 }
 }
 }
}

{
 "node": "nW_8gimES2O-hU0jn3HZBw",
 "query_plan": {
 "request": "SearchJoinRequest{jobId=94662061-49d9-4ac4-bb70-93c2511abffa,
contextIds=SearchLocks{contextIds=[[nW_8gimES2O-

58

hU0jn3HZBw][index1][4]=>[YP21HnYBbiKmK-hXe9BC][4], [nW_8gimES2O-
hU0jn3HZBw][index1][2]=>[Xv21HnYBbiKmK-hXe9A-][3], [nW_8gimES2O-
hU0jn3HZBw][index1][6]=>[Yv21HnYBbiKmK-hXe9BN][5],
[RXgnavPjTp6KSZmRzGTdmQ][index1][3]=>[Yf21HnYBbiKmK-hXe9BC][3], [nW_8gimES2O-
hU0jn3HZBw][index1][0]=>[XP21HnYBbiKmK-hXe9A7][2],
[RXgnavPjTp6KSZmRzGTdmQ][index1][1]=>[Xf21HnYBbiKmK-hXe9A-][1],
[RXgnavPjTp6KSZmRzGTdmQ][index1][5]=>[X_21HnYBbiKmK-hXe9BB][2]]},
innerRequest=SearchRequest{searchType=QUERY_THEN_FETCH, indices=[index1],
indicesOptions=IndicesOptions[ignore_unavailable=false, allow_no_indices=true,
expand_wildcards_open=true, expand_wildcards_closed=false,
expand_wildcards_hidden=false, allow_aliases_to_multiple_indices=true,
forbid_closed_indices=true, ignore_aliases=false, ignore_throttled=true], types=[],
routing='null', preference='null', requestCache=false, maxConcurrentShardRequests=5,
batchedReduceSize=512, preFilterShardSize=128, allowPartialSearchResults=null,
localClusterAlias=null, getOrCreateAbsoluteStartMillis=-1, ccsMinimizeRoundtrips=true,
source={\"query\":{\"hash_semi_join\":{\"field\":\"foreign_key\",\"job_id\":\"94662061
-49d9-4ac4-bb70-93c2511abffa\",\"input_data_id\":\"3386-591710918-1684886495832309826-
2147154417\"}}}}}",
 "row_type": [
 "#0: _shard_id JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer)",
 "#1: _segment_id JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Short)",
 "#2: _doc_id JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer)",
 "#3: _score JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Float)",
 "#4: foreign_key MetadataType{digest=JavaType(class
io.siren.federate.core.planner.schema.PlannerType$String) SEARCHABLE AGGREGATABLE}"
],
 "type": "SearchJoinRel",
 "physical_plan":
"rel#53:SearchJoinRel.ELASTICSEARCH(input#0=SearchJoinTaskRel#48,invocation=SearchRequ
est{id=81d64797-66b7-427a-a7e2-8252d753bf1e},rowType=RecordType(JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer) _shard_id, JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Short) _segment_id, JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Integer) _doc_id, JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Float) _score,
MetadataType{digest=JavaType(class
io.siren.federate.core.planner.schema.PlannerType$String) SEARCHABLE AGGREGATABLE}
foreign_key),elementType=class [Ljava.lang.Object;)",
 "is_cached": false,
 "row_count": 1,
 "cost": {
 "io": 5,
 "network": 0,
 "project": {
 "io": 0,
 "network": 0
 },
 "select": {

59

 "io": 5,
 "network": 0
 }
 },
 "cumulative_cost": {
 "io": 7,
 "network": 4
 },
 "children": [
 {
 "request": "SearchTaskBroadcastRequest{jobId=94662061-49d9-4ac4-bb70-
93c2511abffa, taskType=SearchProjectTask, indices=[index2], types=[],
projection=[id:LONG:class
io.siren.federate.core.planner.schema.PlannerType$Hashed:false],
collector={class=BroadcastTupleCollectorManager, target=[nW_8gimES2O-hU0jn3HZBw,
RXgnavPjTp6KSZmRzGTdmQ]}, timeout=-1, output_data_id=3386-591710918-
1684886495832309826-2147154417, context_ids=SearchLocks{contextIds=[[nW_8gimES2O-
hU0jn3HZBw][index2][0]=>[W_21HnYBbiKmK-hXe9Az][1]]},
input_data_ids=[Lio.siren.federate.core.io.data.DataId;@2a7d114b, source={\n \"bool\"
: {\n \"filter\" : [\n {\n \"term\" : {\n \"tag\" : {\n
\"value\" : \"aaa\",\n \"boost\" : 1.0\n }\n }\n }\n
],\n \"adjust_pure_negative\" : true,\n \"boost\" : 1.0\n }\n}}",
 "row_type": [
 "#0: id MetadataType{digest=JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Hashed) NOT NULL SEARCHABLE
AGGREGATABLE}"
],
 "type": "SearchJoinTaskRel",
 "physical_plan":
"rel#48:SearchJoinTaskRel.ELASTICSEARCH(invocation=SearchRequest{id=24aac4ed-e220-
44d8-8803-aa4bac51e0bf},rowType=RecordType(MetadataType{digest=JavaType(class
io.siren.federate.core.planner.schema.PlannerType$Hashed) NOT NULL SEARCHABLE
AGGREGATABLE} id),elementType=class [Ljava.lang.Object;)",
 "is_cached": false,
 "row_count": 2,
 "cost": {
 "io": 2,
 "network": 4,
 "project": {
 "io": 2,
 "network": 4
 },
 "select": {
 "io": 0,
 "network": 0
 }
 },
 "cumulative_cost": {
 "io": 2,
 "network": 4
 }

60

 }
]
 }
}

Query domain-specific language (DSL)

Join query
The join filter enables the filtering of one set of documents (the target) with another one (the
source) based on shared field values. It accepts the following parameters:

type

 The type of join algorithm to use. Valid values are BROADCAST_JOIN, HASH_JOIN, or INDEX_JOIN. If
this parameter is not specified, the query planner will automatically select the optimal one. For
more information, see Configuring joins by type.

indices

The index names for the child set. Multiple indices can be specified using the Elasticsearch
syntax. Defaults to all indices.

on

An array of two elements that specifies the field paths for the join keys in the parent and the
child set, respectively. The metadata of the fields is validated prior to the query execution, see
field metadata.

request

The search request that is used to compute the set of documents of the child set before
performing the join.

Example

In this example, we will join all the documents from target_index with the documents of
source_index using the HASH_JOIN algorithm. The query first filters documents from source_index and
of type type with the query { "terms" : { "tag" : ["aaa"] } }. It then retrieves the ids of the
documents from the field id specified by the parameter on. The list of ids is then used as filter and
applied on the field foreign_key of the documents from target_index.

61

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/multi-index.html

curl -H 'Content-Type: application/json' -XGET
'http://localhost:9200/siren/target_index/_search' 'd '
{
 "query" : {
 "join" : {
 "type": "HASH_JOIN",
 "indices" : ["source_index"],
 "on" : ["foreign_key", "id"],
 "request" : { ①
 "query" : {
 "terms" : {
 "tag" : ["aaa"]
 }
 }
 }
 }
 }
}
'

① The search request that will be used to filter out the source set (i.e. source_index)

Field Metadata

The fields metadata are accessed to check for their capabilities. The field capabilities contain the
following information:

type

The data type of the field.

searchable

A property indicating whether or not the field is indexed for search.

aggregatable

A property indicating whether or not the field can be aggregated on.

Both the parent and child fields must be of the same type. For hash and broadcast joins, all join
fields must be aggregatable. For index join, parent field must be searchable, and the child field
must be aggregatable.

Suppose we have index1 with two fields, one keyword (indexed as searchable and aggregatable) and
the other long (not indexed as searchable and aggregatable), then we will have the example result
below:

62

GET /siren/index1/_field_caps
{
 "indices": [
 "index1"
],
 "fields": {
 "comments.author.keyword": {
 "keyword": {
 "type": "keyword",
 "searchable": true,
 "aggregatable": true
 }
 },
 "comments.number": {
 "long": {
 "type": "long",
 "searchable": false,
 "aggregatable": false
 }
 }
 }
}

Scoring Capabilities

The join filter returns a constant score. Therefore, the scores of the matching documents from the
child set do not affect the scores of the matching documents from the parent set. However, one can
project the document’s score from the child set and customize the scoring of the documents from
the parent set with a script score function.

Project

When joining a child set with a parent set, the fields from the child set may be projected to the
parent set. The projected fields and associated values are mapped to the matching documents of the
parent set.

A projection is defined in the request body search of the join clause using the parameter project.
The project parameter accepts an array of field’s objects, each one defining a field to project. There
are two different types of field objects: a standard field or a script field.

The projected fields from a child set are accessible in the scope of the parent’s request. One can
refer to a projected field in a project context or in a script context such as in a script field, a script-
based sort, and so on.

Example

Consider the following documents from two indices, company and people:

63

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/query-dsl-function-score-query.html#function-script-score
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/search-request-script-fields.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/search-request-sort.html#_script_based_sorting
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/search-request-sort.html#_script_based_sorting

$ curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/_bulk?pretty'
-d '
{ "index" : { "_index" : "company", "_type" : "company", "_id" : "1" } }
{ "id": 1, "name" : "Acme" }
{ "index" : { "_index" : "company", "_type" : "company", "_id" : "2" } }
{ "id": 2, "name" : "Bueno" }

{ "index" : { "_index" : "people", "_type" : "person", "_id" : "1" } }
{ "id" : 1, "name" : "Alice", "age" : 31, "gender" : "Female", "employed_by" : 1 }
{ "index" : { "_index" : "people", "_type" : "person", "_id" : "2" } }
{ "id" : 2, "name" : "Bob", "age" : 42, "gender" : "Male", "employed_by" : 2 }
{ "index" : { "_index" : "people", "_type" : "person", "_id" : "3" } }
{ "id" : 3, "name" : "Carol", "age" : 26, "gender" : "Female", "employed_by" : 1 }
'

Suppose that the two indices are joined in order to retrieve a list of companies with the ages of all
their respective employees using the following request:

$ curl -H 'Content-Type: application/json'
'http://localhost:9200/siren/company/_search?pretty' -d '{
 "query" : {
 "join" : {
 "indices" : ["people"],
 "on" : ["id", "employed_by"],
 "request" : {
 "project" : [
 { "field" : { "name" : "age", "alias" : "employee_age" } } ①
],
 "query" : {
 "match_all" : {}
 }
 }
 }
 },
 "script_fields" : {
 "employees_age" : {
 "script" : "doc.employee_age" ②
 }
 }
}'

① Project the field age from index people as employee_age

② Return a script field employees_age for each hit with the associated projected values

The response should contain two hits, one for each company, with the script field employees_age as
follows:

64

{
 "hits" : {
 "total" : 2,
 "max_score" : 0.0,
 "hits" : [
 {
 "_index" : "company",
 "_type" : "company",
 "_id" : "2",
 "_score" : 0.0,
 "fields" : {
 "employees_age" : [
 42
]
 }
 },
 {
 "_index" : "company",
 "_type" : "company",
 "_id" : "1",
 "_score" : 0.0,
 "fields" : {
 "employees_age" : [
 26,
 31
]
 }
 }
]
 }
}

Field

A standard field object specifies the projection of a field from a set. It is composed of the following
parameters:

name

The name of a field from a child set to project.

alias

An alias name to give to the projected field. It is not possible to have multiple fields with
identical names in the same set scope as this leads to ambiguity. It is therefore important to
carefully select alias names to avoid such ambiguity.

65

{
 "field" : {
 "name" : "age", ①
 "alias" : "employee_age" ②
 }
}

① The name of the field to project

② An alias for the field name

Script Field

A script field object specifies the projection of the result of a script. It is composed of the following
parameters:

name

The name given to the projected script field.

type

The datatype of the projected script field. Supported datatypes are all numeric datatypes, and
keyword datatype.

script

The definition of a script supported by the Elasticsearch API. Projected fields from a child set are
accessible in the script context using the doc values API.

{
 "script_field" : {
 "name" : "employee_age", ①
 "type" : "integer", ②
 "script": { ③
 "lang": "painless",
 "source": "doc.age"
 }
 }
}

① The name of the script field

② The datatype of the script field

③ The script producing values

Document Score

The score of a matching document from a set may be projected using a standard field object using
the special field name _score.

66

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/number.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/keyword.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/modules-scripting-using.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/modules-scripting-fields.html#modules-scripting-doc-vals

{
 "field" : {
 "name" : "_score",
 "alias" : "employee_score"
 }
}

Retrieving a projected field

A script field may be used to retrieve the values of a projected field for each hit, as shown in the
previous example. The projected field is accessed using the doc values API. In the example, the
projected field employee_age is accessed using the syntax doc.employee_age.

Sorting based on a projected field

A script-based sorting method can be used to sort the hits based on the values of a projected field,
for example:

67

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/modules-scripting-fields.html#modules-scripting-doc-vals
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/sort-search-results.html

$ curl -H 'Content-Type: application/json'
'http://localhost:9200/siren/company/_search?pretty' -d '{
 "query" : {
 "join" : {
 "indices" : ["people"],
 "on" : ["id", "employed_by"],
 "request" : {
 "project" : [
 {
 "script_field" : {
 "name" : "employee_age",
 "type" : "integer",
 "script" : {
 "source" : "doc.age",
 "lang" : "painless"
 }
 }
 }
],
 "query" : {
 "match_all" : {}
 }
 }
 }
 },
 "sort": [
 {
 "_script": {
 "script": {
 "lang": "painless",
 "source": "int sum = 0; for (value in doc.employee_age) { sum += value }
return sum;"
 },
 "type": "number",
 "order": "desc"
 }
 }
]
}'

The response should contain two hits, one for each company, sorted by the sum of their employees
age as follows:

68

{
 "hits" : {
 "total" : 2,
 "max_score" : null,
 "hits" : [
 {
 "_index" : "company",
 "_type" : "company",
 "_id" : "1",
 "_score" : null,
 "_source" : {
 "id" : 1,
 "name" : "Acme"
 },
 "sort" : [
 57.0
]
 },
 {
 "_index" : "company",
 "_type" : "company",
 "_id" : "2",
 "_score" : null,
 "_source" : {
 "id" : 2,
 "name" : "Bueno"
 },
 "sort" : [
 42.0
]
 }
]
 }
}

Scoring based on a projected field

A script-based scoring method can be used to customize the scoring based on the values of a
projected field. For example, we can project the score of the matching documents from the child set
and aggregate them into the parent document as follows:

69

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/query-dsl-function-score-query.html#function-script-score

$ curl -H 'Content-Type: application/json'
'http://localhost:9200/siren/company/_search?pretty' -d '{
 "query": {
 "function_score": {
 "query": {
 "join": {
 "indices": ["people"],
 "on": ["id", "employed_by"],
 "request": {
 "project" : [
 { "field" : { "name" : "_score", "alias" : "child_score" } }
],
 "query": {
 "match_all": {}
 }
 }
 }
 },
 "functions": [
 {
 "script_score": {
 "script": {
 "lang": "painless",
 "source": "float sum = 0; for (value in doc.child_score) { sum += value
} return sum;"
 }
 }
 }
],
 "score_mode": "multiply",
 "boost_mode": "replace"
 }
 }
}'

The response should contain two hits, one for each company, sorted by the sum of their child scores
as follows:

70

{
 "hits" : {
 "total" : 2,
 "max_score" : 2.0,
 "hits" : [
 {
 "_index" : "company",
 "_type" : "company",
 "_id" : "1",
 "_score" : 2.0,
 "_source" : {
 "id" : 1,
 "name" : "Acme"
 }
 },
 {
 "_index" : "company",
 "_type" : "company",
 "_id" : "2",
 "_score" : 1.0,
 "_source" : {
 "id" : 2,
 "name" : "Bueno"
 }
 }
]
 }
}

Aggregating based on a projected field

A script can be used to access and aggregate the values of a projected field. For example, we can
project the values of the field gender of the matching documents from the people index and
aggregate the documents from the company index by using these values as follows:

71

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/search-aggregations.html#_values_source

$ curl -H 'Content-Type: application/json'
'http://localhost:9200/siren/company/_search?pretty' -d '{
 "query" : {
 "join" : {
 "indices" : ["people"],
 "on" : ["id", "employed_by"],
 "request" : {
 "project" : [
 { "field" : { "name" : "gender.keyword", "alias" : "employee_gender" } }
],
 "query" : {
 "match_all" : {}
 }
 }
 }
 },
 "aggs": {
 "count_by_gender": {
 "terms": {
 "script": {
 "lang": "painless",
 "source": "doc.employee_gender"
 }
 }
 }
 }
}'

The response should contain an aggregation result count_by_gender with two buckets Female and
Male as follows:

72

{
 "aggregations": {
 "count_by_gender": {
 "doc_count_error_upper_bound": 0,
 "sum_other_doc_count": 0,
 "buckets": [
 {
 "key": "Female",
 "doc_count": 1
 },
 {
 "key": "Male",
 "doc_count": 1
 }
]
 }
 }
}

Compatibility with Nested Query

The join filter within a nested query is supported. The join key must specify the field path within
the scope of the nested object. For example, as shown below, the join key must be foreign_key and
not nested_obj.foreign_key.

curl -H 'Content-Type: application/json' -XGET
'http://localhost:9200/siren/target_index/_search' -d '
{
 "query" : {
 "nested" : {
 "path" : "nested_obj",
 "query" : {
 "join" : {
 "indices" : ["source_index"],
 "on" : ["foreign_key", "id"],
 "request" : {
 "query" : {
 "match_all" : {}
 }
 }
 }
 }
 }
 }
}
'

A nested query within a join filter is also supported if and only if the join key does not refer to a

73

field of the nested object.

Known limitations

• A join query involving one or more runtime fields is currently supported using HASH_JOIN or
BROADCAST_JOIN algorithms. The INDEX_JOIN algorithm only supports joins with the runtime field
on the child set. Finally, dynamic runtime fields defined in a search request cannot be used in a
join query. Runtime fields must be defined in advance in an index mapping.

Paginating a Search Request
A search request can be paginated in Federate using the search_after parameter. The process starts
by opening a Point-In-Time (PIT) on the parent indices at the root. This operation creates an
identifier that is then passed to the search request to be paginated. This effectively caches the
results of the request and ensures consistency of the hits later on. Subsequent pages are then
retrieved by re-executing the request and updating the search_after parameter. Finally, the PIT
must be closed in order to free memory.

Open and Close Point-In-Times
Federate exposes two REST endpoints that allow to open and close Point-In-Times on indices. The
state of the indices in the PIT remains unchanged for the duration of the PIT, even if they get
updated in the meantime. This allows search requests to be executed against a consistent index,
over a long period of time in the midst of potential changes to the indices.

POST /siren/<index>/_pit

DELETE /siren/_pit
{
 "id":
"AQ92aV82NzVhOTQ5YV80MWU=#15izAwEWdGVzdHNjcm9sbG5vam9pbi1pbmRleBZtWjNtUVROdlRsT1NkTk9Z
YlVGS1d3ABZoR2FERnR6VlNmbUtPR2RaaXVUVjZnAAAAAAAAAAADFjZJN0t0YTdsUVdtMG95a3pvYjd4NkEAAR
ZtWjNtUVROdlRsT1NkTk9ZYlVGS1d3AAA="
}

The POST method opens a PIT on the given index pattern and returns an identifier. The DELETE
method closes the PIT referenced by the identifier in its body.

Pagination
Paginating a search request requires the PIT identifier returned by REST API, and a tiebreaker sort
parameter. The sort parameter is needed to paginate hits: this adds a sort field in the search
response that is then passed to the search_after. Getting the next page is done by getting the sort
value of the last returned hit and setting it to the search_after.

74

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/paginate-search-results.html#search-after
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/point-in-time-api.html

NOTE
The tiebreaker sort parameter is automatically added if there is already a sort in
the request.

Below is a search request that contains a join, where the parent set is machine-*, and the child set is
beat-*.

GET /siren/machine-*/_search
{
 "query": {
 "join": {
 "indices": [
 "beat-*"
],
 "on": [
 "id",
 "machine"
],
 "request": {
 "query": {
 "match_all": {}
 }
 }
 }
 }
}

A PIT over the parent set at the root is created, i.e., over the index pattern machine-*:

POST /siren/machine-*/_pit
{
 "id":
"AQ92aV82NzVhOTQ5YV80MWU=#15izAwEWdGVzdHNjcm9sbG5vam9pbi1pbmRleBZtWjNtUVROdlRsT1NkTk9Z
YlVGS1d3ABZoR2FERnR6VlNmbUtPR2RaaXVUVjZnAAAAAAAAAAADFjZJN0t0YTdsUVdtMG95a3pvYjd4NkEAAR
ZtWjNtUVROdlRsT1NkTk9ZYlVGS1d3AAA="
}

In order to retrieve the first page, we issue the search request with the identifier and a sort
parameter. The index pattern that is normally passed as part of the _search endpoint is omitted:
indices resolved during the PIT creation are retrieved from the given PIT identifier.

75

GET /siren/_search
{
 "sort": { ①
 "_shard_doc": "asc"
 },
 "pit": { ②
 "id":
"AQ92aV82NzVhOTQ5YV80MWU=#15izAwEWdGVzdHNjcm9sbG5vam9pbi1pbmRleBZtWjNtUVROdlRsT1NkTk9Z
YlVGS1d3ABZoR2FERnR6VlNmbUtPR2RaaXVUVjZnAAAAAAAAAAADFjZJN0t0YTdsUVdtMG95a3pvYjd4NkEAAR
ZtWjNtUVROdlRsT1NkTk9ZYlVGS1d3AAA="
 },
 "query": {
 "join": {
 "indices": [
 "beat-*"
],
 "on": [
 "id",
 "machine"
],
 "request": {
 "query": {
 "match_all": {}
 }
 }
 }
 },
 "size": 2 ③
}

① A sort explicitely set with the tiebreaker field _shard_doc.

② The PIT identifier returned by the call to the _pit REST API.

③ The number of hits returned in a page.

In order to retrieve the next pages, the same request must be re-executed, unchanged; the only
change is the search_after parameter that is added, with the sort value from the last returned hit.

76

GET /siren/_search
{
 "sort": {
 "_shard_doc": "asc"
 },
 "pit": {
 "id":
"AQ92aV82NzVhOTQ5YV80MWU=#15izAwEWdGVzdHNjcm9sbG5vam9pbi1pbmRleBZtWjNtUVROdlRsT1NkTk9Z
YlVGS1d3ABZoR2FERnR6VlNmbUtPR2RaaXVUVjZnAAAAAAAAAAADFjZJN0t0YTdsUVdtMG95a3pvYjd4NkEAAR
ZtWjNtUVROdlRsT1NkTk9ZYlVGS1d3AAA="
 },
 "query": {
 "join": {
 "indices": [
 "beat-*"
],
 "on": [
 "id",
 "machine"
],
 "request": {
 "query": {
 "match_all": {}
 }
 }
 }
 },
 "size": 2,
 "search_after": [①
 1
]
}

① The search_after is given the value of the last returned hit’s sort field.

Limitations
The pagination of a search request in Federate currently has the following limitations.

1. The PIT identifier returned by the /siren/_pit REST API can only be used by a single search
request.

2. A join performed against a virtual indices located on a remote Elasticsearch cluster is not
supported, if that remote cluster doesn’t have the Federate plugin installed.

Cluster APIs
The cluster APIs enables the retrieval of cluster and node level information, such as statistics about
off-heap memory allocation.

77

Nodes Statistics
The cluster nodes stats API allows to retrieve one or more (or all) of the cluster nodes statistics.

curl -XGET 'http://localhost:9200/_siren/nodes/stats'
curl -XGET 'http://localhost:9200/_siren/nodes/nodeId1,nodeId2/stats'

The first command retrieves stats of all the nodes in the cluster. The second command selectively
retrieves nodes stats of only nodeId1 and nodeId2

By default, all stats are returned. You can limit this by combining any of the following stats:

memory

Memory allocation statistics

planner

Statistics about the planner job and task pools.

Permissions: To use this API, ensure that the cluster-level action
cluster:monitor/federate/nodes/stats is granted by the security system.

Memory Information

The memory flag can be set to retrieve information about the memory allocation:

curl -XGET 'http://localhost:9200/_siren/nodes/stats/memory'

The response includes memory allocation statistics for each node node as follows:

78

{
 "se6baEC9T4K7-14yuG2qgA": {
 "memory": {
 "allocated_direct_memory_in_bytes": 0,
 "allocated_root_memory_in_bytes": 0,
 "root_allocator_dump_reservation_in_bytes": 0,
 "root_allocator_dump_actual_in_bytes": 0,
 "root_allocator_dump_peak_in_bytes": 0,
 "root_allocator_dump_limit_in_bytes": 1073741824
 }
 },
 "sKnVUBo9ShGzkl4GYih7BA": {
 "memory": {
 "allocated_direct_memory_in_bytes": 0,
 "allocated_root_memory_in_bytes": 0,
 "root_allocator_dump_reservation_in_bytes": 0,
 "root_allocator_dump_actual_in_bytes": 0,
 "root_allocator_dump_peak_in_bytes": 0,
 "root_allocator_dump_limit_in_bytes": 1073741824
 }
 }
}

allocated_direct_memory_in_bytes

The actual direct memory allocated by Netty in bytes

allocated_root_memory_in_bytes

The actual direct memory allocated by the root allocator in bytes

root_allocator_dump_reservation_in_bytes

Dump of the root allocator initial reservation direct memory allocated.

root_allocator_dump_actual_in_bytes

Dump of the root allocator actual direct memory allocated.

root_allocator_dump_peak_in_bytes

Dump of the root allocator peak direct memory allocated.

root_allocator_dump_limit_in_bytes

Dump of the root allocator limit direct memory allocated.

Planner Information

The planner flag can be set to retrieve information about the planner job and task pools:

curl -XGET 'http://localhost:9200/_siren/nodes/stats/planner'

79

The response includes memory allocation statistics for each node as follows:

{
 "se6baEC9T4K7-14yuG2qgA": {
 "planner": {
 "thread_pool": {
 "job": {
 "permits": 1,
 "queue": 0,
 "active": 0,
 "largest": 1,
 "completed": 538
 },
 "task": {
 "permits": 3,
 "queue": 0,
 "active": 0,
 "largest": 3,
 "completed": 3955
 }
 }
 }
 },
 "sKnVUBo9ShGzkl4GYih7BA": {
 "planner": {
 "thread_pool": {
 "job": {
 "permits": 1,
 "queue": 0,
 "active": 0,
 "largest": 1,
 "completed": 537
 },
 "task": {
 "permits": 3,
 "queue": 0,
 "active": 0,
 "largest": 3,
 "completed": 3863
 }
 }
 }
 }
}

Query cache information

To retrieve information about Siren Federate’s query cache, you can set the query_cache flag, as
follows:

80

curl -XGET 'http://localhost:9200/_siren/nodes/stats/query_cache'

The response includes statistics about the query_cache on each node:

{
 "_nodes": {
 "total": 2,
 "successful": 2,
 "failed": 0
 },
 "cluster_name": "my_cluster",
 "nodes": {
 "tEwWYjpbQzSYghVJVt87QQ": {
 "timestamp": 1545408407569,
 "name": "node_s0",
 "transport_address": "127.0.0.1:41639",
 "host": "127.0.0.1",
 "ip": "127.0.0.1:41639",
 "roles": [
 "master",
 "data",
 "ingest"
],
 "query_cache": {
 "memory_size_in_bytes": 0,
 "total_count": 0,
 "hit_count": 0,
 "miss_count": 0,
 "cache_size": 0,
 "cache_count": 0,
 "evictions": 0
 }
 },
 "Dw06QS6oRbS3fEMazn5llQ": {
 "timestamp": 1545408407569,
 "name": "node_s1",
 "transport_address": "127.0.0.1:42841",
 "host": "127.0.0.1",
 "ip": "127.0.0.1:42841",
 "roles": [
 "master",
 "data",
 "ingest"
],
 "query_cache": {
 "memory_size_in_bytes": 0,
 "total_count": 0,
 "hit_count": 0,
 "miss_count": 0,

81

 "cache_size": 0,
 "cache_count": 0,
 "evictions": 0
 }
 }
 }
}

memory_size_in_bytes

The size in bytes of the cache

total_count

The total number of lookups in the cache

hit_count

The number of successful lookups in the cache

miss_count

The number of lookups in the cache that failed to retrieve data

cache_size

The number of entries in the cache

cache_count

The number of entries that have been cached

evictions

The number of entries that have been evicted from the cache

Optimizer Statistics Cache

The cluster optimizer cache API allows to retrieve a snaphshot of the query optimizer cache for a
list of the cluster nodes.

curl -XGET 'http://localhost:9200/_siren/cache'
curl -XGET 'http://localhost:9200/_siren/nodeId1,nodeId2/cache'
curl -XGET 'http://localhost:9200/_siren/cache/clear'
curl -XGET 'http://localhost:9200/_siren/nodeId1,nodeId2/cache/clear'

The first command retrieves the state of the optimizer cache for all the nodes in the cluster, while
the second only for the desired list of node IDs. The third command invalidates the optimizer cache
on every node, while the last command does so for only the selected nodes.

The response includes statistics about the cache use on each node:

82

{
 "aQAf0tIwRtq_n4mBr9SLTw": {
 "size": 92,
 "hit_count": 32,
 "miss_count": 92,
 "eviction_count": 42,
 "load_exception_count": 0,
 "load_success_count": 92,
 "total_load_time_in_millis": 68004
 }
}

size

The estimated number of entries in the cache.

hit_count

The number of cache hits.

miss_count

The number of cache misses.

eviction_count

The number of evicted entries.

load_exception_count

The number of times a request failed to execute as its response was to be put in the cache.

load_success_count

The number of times a request was executed successfully as its response was to be put in the
cache.

total_load_time_in_millis

The time spent in milliseconds to load request responses into the cache.

Permissions: To use this API, ensure that the cluster-level action
cluster:monitor/federate/planner/optimizer/stats/get is granted by the security system.

Index APIs
The index APIs are used to manage individual indices.

Permissions: No specific index-level actions are required to use the index APIs. Siren
Platform uses the same action as Elasticsearch: indices:admin/cache/clear.

83

Query Cache
Siren’s query cache can be cleared together with that of Elasticsearch. For more details, please refer
to the Elasticsearch clear cache documentation.

curl -XPOST 'http://localhost:9200/<index>/_cache/clear?query=true'

The POST request clears the query cache for the specified index.

Connector APIs
In this section we present the APIs available to interact with datasources, virtual indices, ingestion
jobs.

Permissions: To use the APIs listed in this section, ensure that the cluster-level wildcard
action cluster:internal/federate/* is granted by the security system.

Configuring a JDBC-enabled node
You can ingest data from a JDBC datasource on a node where the Siren Federate plugin is installed.

Before you begin

The Elasticsearch cluster must contain at least one node that is enabled to issue queries over JDBC.
It is recommended that you use a coordinating-only node for this role, although this is not a
requirement for testing purposes.

To configure the JDBC datasource, you need an Avatica server. The Avatica server in turn connects
to the remote JDBC database.

If your system needs additional encryption, generate a custom key by running the keygen.sh script.

Procedure

To configure a JDBC datasource, complete the following steps:

1. Open the elasticsearch.yml file and add the following setting:

node.attr.connector.jdbc: true

2. Restart the Elasticsearch service.

84

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/indices-clearcache.html

Configuring encryption for JDBC datasources

JDBC passwords are encrypted by default by using a predefined 128-bit AES key. However,
additional encryption is advisable in a production environment.

Before you create datasources, it is recommended that you generate a custom key by running the
keygen.sh script that is included in the siren-federate plugin directory.

Procedure

1. From the siren-federate plugin directory, run the following command:

bash plugins/siren-federate/tools/keygen.sh -s 128

The command outputs a random base64 key. It is also possible to generate keys longer than 128
bit if your JVM supports it.

2. To use the custom key, set the following parameters in the elasticsearch.yml file on master
nodes and on all of the JDBC nodes:

◦ siren.connector.encryption.enabled: true by default, but can be set to false to disable JDBC
password encryption.

◦ siren.connector.encryption.secret_key: a base64 encoded AES key that is used to encrypt
JDBC passwords.

Examples

The following are elasticsearch.yml settings that can be used for a master node with a custom
encryption key:

siren.connector.encryption.secret_key: "1zxtIE6/EkAKap+5OsPWRw=="

The following are elasticsearch.yml settings for a JDBC node with a custom encryption key:

siren.connector.encryption.secret_key: "1zxtIE6/EkAKap+5OsPWRw=="
node.attr.connector.jdbc: true

After you save the configuration, restart the nodes to apply the settings.

Datasource API
In this section we present the API available to interact with datasources.

Siren Federate currently supports the following types of datasource:

• federate to connect to a remote Federate cluster.

• Elasticsearch to connect to a remote Elasticsearch cluster.

85

• JDBC to connect to any external database providing a JDBC driver via an Avatica server.

Datasource management

The endpoint for datasource management is at /_siren/connector/datasource.

Datasource creation and modification

A datasource with a specific id can be created by issuing a PUT request. The body of the request
varies with the type of the datasource. A datasource cannot be safely updated by using a PUT
request due to a lack of concurrency control. By default, it is not allowed to update an existing
document.

Permissions: To create a datasource, you must ensure that the cluster-level action
cluster:admin/federate/connector/datasource/put is granted by the security system.

Federate datasource

curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/_siren/connecto
r/datasource/<id>' -d '
{
 "federate": {
 "alias": "remotename"
 }
}
'

Federate configuration parameters:

• alias: The name of the configured cluster alias in the remote Federate cluster configuration.

Elasticsearch datasource

curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/_siren/connecto
r/datasource/<id>' -d '
{
 "elastic": {
 "alias": "remotename"
 }
}
'

Elasticsearch configuration parameters:

• alias: The name of the configured cluster alias in the remote cluster configuration.

86

JDBC datasource

curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/_siren/connecto
r/datasource/<id>' -d '
{
 "jdbc": {
 "driver": "org.apache.calcite.avatica.remote.Driver",
 "url": "jdbc:avatica:remote:url=http://localhost:8765;serialization=json",
 "username": "username",
 "password": "password",
 }
}
'

JDBC configuration parameters:

• driver: the class name of the JDBC driver.

• url: the JDBC url of the datasource.

• username: the username that will be passed to the JDBC driver when getting a connection
(optional).

• password: the password that will be passed to the JDBC driver when getting a connection
(optional).

• timezone: if date and timestamp fields are stored in a timezone other than UTC, specifying this
parameter will instruct the plugin to convert dates and times to/from the specified timezone
when performing queries and retrieving results.

• properties: a map of JDBC properties to be set when initializing a connection.

When updating the datasource, if there was already a password, you have to pass it again. You can
either pass the new clear password, or remove the password property to keep the previous one.

Datasource retrieval

The datasource configuration can be retrieved by issuing a GET request as follows:

curl -XGET 'http://localhost:9200/_siren/connector/datasource/<id>'

If you want to update the datasource and keep the current password, just remove the "password"
property.

Permissions: To allow the retrieval of a datasource, you must ensure that the cluster-level
action cluster:admin/federate/connector/datasource/get is granted by the security system.

Datasource deletion

To delete a datasource, issue a DELETE request as follows:

87

curl -XDELETE 'http://localhost:9200/_siren/connector/datasource/<id>'

Permissions: To allow the deletion of a datasource, you must ensure that the cluster-level
action cluster:admin/federate/connector/datasource/delete is granted by the security system.

Datasource listing

To list the datasources configured in the system, issue a GET request as follows:

curl -XGET 'http://localhost:9200/_siren/connector/datasource/_search?type=federate'

Permissions: To allow the listing of datasources, you must ensure that the cluster-level action
cluster:admin/federate/connector/datasource/search is granted by the security system.

The parameter type is optional and allows to filter datasource results to a specific type: either
federate, elastic, or jdbc.

Datasource validation

To validate the connection to a datasource, issue a POST request as follows:

curl -XPOST 'http://localhost:9200/_siren/connector/datasource/<id>/_validate'

Permissions: To allow the validation of a datasource, you must ensure that the cluster-level
action cluster:admin/federate/connector/datasource/validate is granted by the security
system.

Datasource catalog metadata

To get the metadata related to a datasource connection catalog, issue a POST request as follows:

curl -XPOST 'http://localhost:9200/_siren/connector/datasource/<id>/_metadata?catalog
=<catalog>&schema=<schema>'

The parameters are:

• catalog: The name of the catalog,

• schema: The name of the schema.

The parameters catalog and schema are optionals:

88

• If no catalog parameters is given, the API returns the catalog list.

• If no schema parameters is given, then the catalog parameter must be provided.

The API returns the schema list for the given catalog.

The result is a JSON document which contains the resource list for the given catalog and schema.

{
 "_id": "postgres",
 "found": true,
 "catalogs": [
 {
 "name": "connector",
 "schemas": [
 {
 "name": "public",
 "resources": [
 {
 "name": "emojis"
 },
 {
 "name": "Player"
 },
 {
 "name": "Matches"
 },
 {
 "name": "ingestion_testing"
 }
]
 }
]
 }
]
}

Permissions: To allow the retrieval of the metadata of a datasource, you must ensure that the
cluster-level action cluster:admin/federate/connector/datasource/metadata is granted by the
security system.

Datasource field metadata

To get the field metadata related to a datasource connection resource (a table), issue a POST request
as follows:

89

curl -XPOST 'http://localhost:9200/_siren/connector/datasource/<id>/_resource_metadat
a?catalog=<catalog>&schema=<schema>&resource=<resource>'

The parameters are:

-catalog: The name of the catalog, -schema: The name of the schema, -resource: The name of the
resource (table).

The result is a JSON document which contains the columns list for the given catalog, schema and
resource. It contains also the name of the primary key if it exists.

{
 "_id": "postgres",
 "found": true,
 "columns": [
 {
 "name": "TEAM"
 },
 {
 "name": "ID"
 },
 {
 "name": "NAME"
 },
 {
 "name": "AGE"
 }
],
 "single_column_primary_keys": [
 {
 "name": "ID"
 }
]
}

Permissions: To allow the retrieval of the field metadata of a datasource, you must ensure
that the cluster-level action cluster:admin/federate/connector/datasource/field-metadata is
granted by the security system.

Datasource transform suggestions

To get a suggestion of a transform configuration that can be used by the ingestion, issue a POST
request as follows:

90

curl -H 'Content-Type: application/json' -XPOST 'http://localhost:9200/_siren/connect
or/datasource/<id>/_transforms' -d '
{
 "query": "SELECT * FROM events"
}
'

It executes the query and returns a collection of transform operations based on the columns
returned by the query.

{
 "_id": "postgres",
 "found": true,
 "transforms": [
 {
 "input": [
 {
 "source": "id"
 }
],
 "output": "id"
 },
 {
 "input": [
 {
 "source": "occurred"
 }
],
 "output": "occurred"
 },
 {
 "input": [
 {
 "source": "value"
 }
],
 "output": "value"
 },
 {
 "input": [
 {
 "source": "location"
 }
],
 "output": "location"
 }
]
}

91

Permissions: To suggest a transformation, you must ensure that the cluster-level action
cluster:admin/federate/connector/datasource/suggest/transform is granted by the security
system.

Virtual index API
In this section we present the API available to interact with the virtual indices.

Virtual index management

Virtual index creation and modification

A virtual index with a specific id can be updated by issuing a PUT request as follows:

curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/_siren/connecto
r/index/<id>' -d '
{
 "datasource": "ds",
 "catalog": "catalog",
 "schema": "schema",
 "resource": "table",
 "key": "id",
 "search_fields": [
 {
 "function": "LIKE",
 "field": "NAME"
 }
]
}
'

The id of a virtual index must be a valid lowercase Elasticsearch index name; it is recommended to
start virtual indices with a common prefix to simplify handling of permissions.

Body parameters:

• datasource: the id of an existing Elasticsearch datasource.

• resource: the name of a table or view on the remote datasource.

• key: the name of a unique column; if a virtual index has no primary key it will be possible to
perform aggregations, however queries that expect a reproducible unique identifier will not be
possible.

• catalog and schema: the catalog and schema containing the table specified in the resource
parameter; these are usually required only if the connection does not specify a default catalog
or schema.

• search_fields: An optional list of field names that will be searched using the LIKE operator

92

when processing queries. Currently only the LIKE function is supported.

Permissions: To create a virtual index, ensure that the index-level action
indices:admin/federate/connector/put is granted by the security system.

Whenever a virtual index is created, the Siren Federate plugin creates a concrete Elasticsearch
index with the same name as the virtual index, which would contain some metadata about the
virtual index. When starting up, the Siren Federate plugin will check for missing concrete indices
and will attempt to create them automatically. For more information, see Operations on virtual
indices.

Virtual index deletion

To delete a virtual index, issue a DELETE request as follows:

curl -XDELETE 'http://localhost:9200/_siren/connector/index/<id>'

When a virtual index is deleted, the corresponding concrete index is not deleted automatically.

Permissions: To delete a virtual index, ensure that the index-level action
indices:admin/federate/connector/delete is granted by the security system.

Virtual index listing

To list the virtual indices configured in the system, issue a GET request as follows:

curl -XGET 'http://localhost:9200/_siren/connector/index/_search'

Permissions: To list virtual indices, ensure that the index-level action
indices:admin/federate/connector/search is granted by the security system.

Ingestion API

93

Permissions: To use the ingestion API, you must ensure that the following cluster-level
actions are granted by the security system:

• Delete: cluster:admin/federate/connector/ingestion/delete

• Encryption: cluster:admin/federate/connector/ingestion/encrypt

• Get: cluster:admin/federate/connector/ingestion/get

• Put: cluster:admin/federate/connector/ingestion/put

• Run: cluster:admin/federate/connector/ingestion/run

• Search: cluster:admin/federate/connector/ingestion/search

• Validate: cluster:admin/federate/connector/ingestion/validate

Ingestion management

The endpoint for ingestion management is at /_siren/connector/ingestion.

Datasource query sample

This method runs a query and returns an array of results and an Elasticsearch type for each
column found.

curl -H 'Content-Type: application/json' -XPOST 'http://localhost:9200/_siren/connect
or/ingestion/<id>/_sample' -d '
{
 "query": "SELECT * FROM events",
 "row_limit": 10,
 "max_text_size": 100
}
'

94

{
 "_id": "valid",
 "found": true,
 "types": {
 "location": "keyword",
 "id": "long",
 "occurred": "date",
 "value": "long"
 },
 "results": [
 {
 "id": 0,
 "occurred": 1422806400000,
 "value": 1,
 "location": "Manila"
 },
 {
 "id": 1,
 "occurred": 1422806460000,
 "value": 5,
 "location": "Los Angeles"
 },
 {
 "id": 2,
 "occurred": 1422806520000,
 "value": 10,
 "location": "Pompilio"
 }
]
}

Permissions: To sample a datasource, you must ensure that the cluster-level action
cluster:admin/federate/connector/ingestion/sample is granted by the security system.

Ingestion creation and modification

An ingestion with a specific id can be updated by issuing a PUT request as follows. An ingestion with
a specific id can be created by issuing a PUT request. An ingestion can be safely updated by a PUT
request due to the implementation of _seq_no and _primary_term fields which enables concurrent
modification.

curl -H 'Content-Type: application/json' -XPUT 'http://localhost:9200/_siren/connecto
r/ingestion/<id>' -d '
{
 "ingest": {
 "datasource": "postgres",
 "query": "select * from events {{#max_primary_key}}WHERE

95

id>{{max_primary_key}}{{/max_primary_key}} limit 10000",
 "batch_size": 10,
 "schedule": "0 0 * * * ?",
 "enable_scheduler": true,
 "target": "events",
 "staging_prefix": "staging-index",
 "strategy": "REPLACE",
 "pk_field": "id",
 "mapping": {
 "properties": {
 "id": { "type": "long" },
 "value": { "type": "keyword" },
 "location": { "type": "text" },
 "geolocation": { "type": "geo_point" }
 }
 },
 "pipeline": {
 "processors": [
 {
 "set" : {
 "field": "foo",
 "value": "bar"
 }
 }
]
 },
 "transforms": [{
 "input": [{"source": "id"}],
 "output": "id",
 "mapping": {
 "type": "long"
 }
 },{
 "input": [
 {"source": "lat"},
 {"source": "lon"}
],
 "output": "geolocation",
 "transform": "geo_point",
 "mapping": {
 "type": "geo_point"
 }
 }],
 "ds_credentials": {
 "username": "user",
 "password": "pass"
 },
 "es_credentials": {
 "username": "user",
 "password": "pass"
 },

96

 "description": "description"
 }
}
'

Body parameters:

• ingest: the properties of the ingestion.

Ingest configuration parameters:

• datasource: the name of a datasource.

• query: the template query passed to the JDBC driver collecting the record to ingest.

• batch_size: An optional batch size (overriding the default global value).

• schedule: An optional schedule using the cron syntax.

• enable_schedule: enable or disable the scheduled execution.

• target: A target Elasticsearch index name.

• staging_prefix: An optional prefix for the staging Elasticsearch index.

• strategy: An update strategy. It can be either INCREMENTAL or REPLACE.

• pk_field: A primary key field name.

• mapping: An Elasticsearch mapping definition.

• pipeline: An optional pipeline configuration.

• transforms: A sequence of transforms to map the fields declared by the query to the fields in the
Elasticsearch mapping definition.

• ds_credentials: An optional set of credentials used to connect to the database.

• es_credentials: The optional credentials that will be used to perform Elasticsearch requests
during jobs.

• description: An optional description.

Strategy:

There are two available ingestion strategies:

• INCREMENTAL: The index is created if it does not exist. The ingested records are inserted or
updated in place.

• REPLACE: The index name is an alias to a staging index. The ingested records are inserted on the
staging index. When the ingestion is done the alias is moved from the previous staging index to
the new one. If anything wrong happens the alias is untouched and points to the previous
staging index.

Ingestion query:

The query defined in the ingestion configuration is written in the datasource language. The query
can be written using mustache and the following variables are provided, if applicable, when

97

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html

converting the query to a string:

• max_primary_key: the maximum value of the primary key in Elasticsearch.

• last_record_timestamp: the UTC timestamp at which the last record was successfully processed
by an ingestion job.

• last_record: an object with the scalar values in the last record that was successfully processed
by the ingestion job.

Mapping transform:

A mapping transform takes one or more fields from a datasource record as inputs and outputs a
field that can be indexed with a valid Elasticsearch type.

A mapping transform has the following properties:

• input: a sequence of inputs, where an input can be either the name of a field defined in the job
query or the name of a field in the target Elasticsearch mapping.

• transform: the name of a predefined function that takes as input the values of the fields specified
in the input parameter and the mapping properties of the target Elasticsearch field. The
function outputs the value to be indexed; if transform is not set, the system uses a generic cast
function to create the output.

• output: the name of the target Elasticsearch field.

Input:

The input structure must provide one of the following properties:

• source: the name of a field defined in the job query.

• target: the name of a field in the target Elasticsearch mapping.

Transforms (“predefined functions”):

• copy: a default cast transform that produces a scalar Elasticsearch value in a way analogous to
how the connector already translates JDBC types to Elasticsearch types. If the JDBC driver
reports array fields / struct fields correctly, they will be written as Elasticsearch arrays. Any
JDBC type that is not supported / not recognized causes an exception.

• geo_point: transform that produces a geo_point value from two numerical inputs, where the
first is the latitude and the second the longitude.

• array: an array transform that produces an array Elasticsearch value from a comma separated
string field in a record.

Credential parameters (for ElasticSearch or the JDBC database):

If the user does not have the permission to manage datasources in the cluster these credentials are
mandatory.

• username: the login to use to connect to the resource.

• password: the password to use to connect to the resource.

98

When updating the ingestion properties, if there was already a password, you have to pass it again.
You can either pass the new clear password, or remove the password property to keep the previous
one.

Ingestion retrieval

The ingestion properties can be retrieved by issuing a GET request as follows:

curl -XGET 'http://localhost:9200/_siren/connector/ingestion/<id>'

Ingestion deletion

To delete an ingestion, issue a DELETE request as follows:

curl -XDELETE 'http://localhost:9200/_siren/connector/ingestion/<id>'

Ingestion listing

To list the ingestions configured in the system, issue a GET request as follows:

curl -XGET 'http://localhost:9200/_siren/connector/ingestion/_all?status=[false|true]
&detailed=[false|true]'

NOTE
curl -XGET 'http://localhost:9200/_siren/connector/ingestion/_search' API has
been deprecated and is scheduled to be removed in next major release.

If the optional status parameter is set to true, it also returns the last job status, and the last job log.

If the optional detailed parameter(true by default) is set to false, then mapping, pipeline,
transforms and removed_fields are not returned.

Ingestion validation

To validate the connection to an ingestion, issue a POST request as follows:

curl -XPOST 'http://localhost:9200/_siren/connector/ingestion/<id>/_validate'

Run an ingestion job

To execute an ingestion job, issue a POST request as follows:

curl -XPOST 'http://localhost:9200/_siren/connector/ingestion/<id>/_run'

The response returns the jobId that can be use to track the status of the running job:

99

{
 "_id": "postgres-events",
 "_version": 49,
 "found": true,
 "jobId": "postgres-events"
}

Job API
The job API provides methods for managing running jobs and retrieving status about previous
executions.

Permissions: To use the job API, you must ensure that the following cluster-level actions are
granted by the security system:

• Abort: cluster:admin/federate/connector/jobs/abort

• Get: cluster:admin/federate/connector/jobs/get

• Running jobs: cluster:admin/federate/connector/jobs/running/get

• Job log: cluster:admin/federate/connector/jobs/log/search

Job management

The endpoint for job management is at /_siren/connector/jobs.

Running jobs statuses

The status of all running jobs can be retrieved by issuing a GET request as follows:

curl -XGET 'http://localhost:9200/_siren/connector/jobs/<type>'

The possible type value is:

• ingestion: This type is related to the ingestion jobs.

Running job status

The status of a job can be retrieved by issuing a GET request as follows:

curl -XGET 'http://localhost:9200/_siren/connector/jobs/<type>/<id>'

This API provides the status of the current running job if there is any, or the status of the last
execution.

Body parameters:

100

• status: the status of the job.

Status parameters:

• id: the id of the job.

• is_running: a boolean value indicating if the job is running.

• is_aborting: an optional boolean value which indicates that the job is aborting.

• start_time: a timestamp with the starting time of the job.

• end_time: a timestamp with the ending time of the job.

• infos: textual information.

• error: an optional sequence of error messages.

• state: the current state of the job.

• count: the total number of processed records.

• last_id: the optional last known value of the primary key column.

Possible state values:

• running: the job is running.

• aborting: the job is aborting due to the user request.

• aborted: the job has been aborted.

• error: the job failed with an error.

• successful: the job was completed successfully.

JSON representation while a job is running:

{
 "_id": "postgres-events",
 "type": "ingestion",
 "found": true,
 "status": {
 "version": 1,
 "id": "postgres-events",
 "is_running": true,
 "start_time": 1538731228589,
 "infos": "The job is running.",
 "state": "running",
 "count": 3459,
 "last_id": "2289"
 }
}

JSON representation of a successfully completed job:

101

{
 "_id": "postgres-events",
 "type": "ingestion",
 "found": true,
 "status": {
 "version": 1,
 "id": "postgres-events",
 "is_running": false,
 "start_time": 1538733893554,
 "end_time": 1538733911829,
 "infos": "The job is done.",
 "state": "successful",
 "count": 10000,
 "last_id": "12219"
 }
}

JSON representation of a job who failed due to an error:

{
 "_id": "postgres-events",
 "type": "ingestion",
 "found": true,
 "status": {
 "version": 1,
 "id": "postgres-events",
 "is_running": false,
 "start_time": 1538730949766,
 "end_time": 1538730961293,
 "infos": "The job has failed.",
 "error": [
 "Could not execute datasource query [postgres].",
 "Failed to initialize pool: The connection attempt failed.",
 "The connection attempt failed.",
 "connect timed out"
],
 "state": "error",
 "count": 0
 }
}

Cancelling a running job

This API provides a method to cancel a running job.

curl -XPOST 'http://localhost:9200/_siren/connector/jobs/ingestion/<id>/_abort'

102

{
 "_id": "postgres-events",
 "type": "ingestion",
 "found": true,
 "status": {
 "version": 1,
 "id": "postgres-events",
 "is_running": false,
 "is_aborting": true,
 "start_time": 1538733800993,
 "end_time": 1538733805318,
 "infos": "The job has been aborted.",
 "state": "aborted",
 "count": 2220,
 "last_id": "2219"
 }
}

Searching on the job log

This API provides a method to retrieve the status of completed jobs. It is possible to pass parameters
to filter the results.

curl -XGET 'http://localhost:9200/_siren/connector/jobs/_search'

Possible filter parameters:

• start_time_from: jobs which start time is greater than or equal to the passed value.

• start_time_to: jobs which start time is lower than or equal to the passed value.

• type: a filter on the job type.

• state: the state of the job status. See the job status description to get a list of possible values.

• id: the id of the job.

Request and result example:

curl -XGET 'http://localhost:9200/_siren/connector/jobs/_search?type=ingestion&id=pos
tgresevents&start_time_to=1539192173232'

103

{
 "hits": {
 "total": 1,
 "hits": [
 {
 "_id": "postgresevents11e247fa-ccb1-11e8-ad75-c293294ec513",
 "_source": {
 "ingestion": {
 "version": 1,
 "id": "postgresevents",
 "is_running": false,
 "start_time": 1539192150699,
 "end_time": 1539192151612,
 "infos": "The job is done.",
 "state": "successful",
 "count": 0
 }
 }
 }
]
 }
}

Sessions APIs
The Sessions APIs enable the management of user sessions. Siren Federate tracks the number of
concurrent user sessions across the cluster. A user session must be specified for each search
request with the header X-Federate-Session-Id. A same session id can be reused across multiple
search requests.

Permissions: To use the sessions APIs, you must ensure that the following cluster-level
actions are granted by the security system:

• Get: cluster:admin/federate/sessions/get

• Clear: cluster:admin/federate/sessions/clear

Get Sessions
The Get Sessions API allows to retrieve the list of the current active sessions.

curl -XGET 'http://localhost:9200/_siren/sessions'

The response includes the size of the session pool, the number of active sessions and the list of
active session ids:

104

{
 "size": 5,
 "active": 2,
 "active_sessions_ids" : [user_1, user_2]
}

Clear Sessions
Sessions are automatically removed when the session timeout since the last search request has
been exceeded. However, it is recommended to clear the session as soon as the session is not being
used anymore in order to free slots in the session pool:

curl -XDELETE 'http://localhost:9200/_siren/sessions/user_1'

or

curl -H 'Content-Type: application/json' -XDELETE
'http://localhost:9200/_siren/sessions' -d '
{
 "session_id" : "user_1"
}
'

Multiple session IDs can be passed as a comma separated list of values

curl -XDELETE 'http://localhost:9200/_siren/sessions/user_1,user_2'

or as an array:

curl -H 'Content-Type: application/json' -XDELETE
'http://localhost:9200/_siren/sessions' -d '
{
 "session_id" : [
 "user_1",
 "user_2"
]
}
'

License APIs
Federate includes a license manager service and a set of rest commands to register, verify and
delete a Siren’s license. By default, the Siren Community license is included.

105

Without a valid license, Federate will log a message to notify that the current license is invalid
whenever a search request is executed.

Permissions: To use this API, ensure that the cluster-level wildcard action
cluster:admin/federate/license/* is granted by the security system.

Put License
The Put License API allows to upload a license to the cluster:

curl -XPUT 'http://localhost:9200/_siren/license'

Let’s assume you have a Siren license named license.sig. You can upload and register this license
in Elasticsearch using the command:

$ curl -XPUT -H 'Content-Type: application/json' -T license.sig
'http://localhost:9200/_siren/license'

acknowledged: true

Get License
The Get License API allows to retrieve and validate the license:

curl -XGET 'http://localhost:9200/_siren/license'

The response includes the content of the license as well as a summary of the license validation. If
the validity check fails, a list of invalid parameters with a cause is provided:

106

{
 "license_content": {
 "description": "Siren Community License",
 "issue_date": "2019-01-29",
 "permissions": {
 "federate": {
 "max_concurrent_sessions": "1",
 "max_nodes": "1"
 },
 "investigate": {
 "max_dashboards": "12",
 "max_graph_nodes": "500",
 "max_virtual_indices": "5"
 }
 },
 "valid_date": "2020-01-29"
 },
 "license_validation": {
 "is_valid": false,
 "invalid_parameters": [
 {
 "parameter": "permissions.federate.max_nodes",
 "cause": "Too many nodes in the Federate cluster 2 > 1"
 },
 {
 "parameter": "permissions.federate.max_concurrent_sessions",
 "cause": "Too many concurrent user sessions in the Federate cluster 5 > 1"
 }
]
 }
}

Delete License
The Delete License API allows to delete a license from the cluster. Without license, the system will
fall back to the Siren Community license.

curl -XDELETE 'http://localhost:9200/_siren/license'

Performance Considerations

Join types
Siren Federate offers three join strategies: the hash join, the broadcast join and the index join.

All strategies have advantages and disadvantages, but choosing the right one can help to optimize

107

system performance. For more information, see Configuring joins by type.

Numeric versus string attributes
Joining numeric attributes is more efficient than joining string attributes. If you are planning to
join attributes of type string, we recommend to generate a murmur hash of the string value at
indexing time into a new attribute, and use this new attribute for the join. Such index-time data
transformation can be easily done using Logstash’s fingerprint plugin.

Vectorized pipeline performance
Tuples collected will be transferred in one or more packets. The size of a packet has an impact on
the performance. Smaller packets will take less memory but will increase cpu times on the receiver
side since it will have to reconstruct a tuple collection from many small packets (especially for
sorted tuple collection). By default, the size of a packets is set to 8MB, (which represents 1,048,576
tuples for a column of long datatype). The size can be configured using the setting key
siren.io.pipeline.max_packet_size with a value representing the maximum size (in bytes) of a
packet. For more information, see Vectorized Pipeline.

Using the preference parameter for search requests
To optimize cache utilization, Elasticsearch recommends using the preference parameter, which
controls which shard copies on which to execute the search.

By default, Elasticsearch selects from the available shard copies in an unspecified order, taking the
allocation awareness and adaptive replica selection configuration into account. However, it may
sometimes be desirable to try and route certain searches to certain sets of shard copies. For
example, the preference parameter could be set to a custom string value like a session or user id.
This is very important in Siren Federate to better leverage the join query cache.

For more information, see Tune for search speed.

Caution when force-merging single-segment indices
The search-project task parallelizes its work by using a single worker per index segment.
Therefore, caution must be exercised when considering a force-merge of an index.

Force-merging an index with a single segment impacts the search-project task’s performance, as it
will not be able to parallelize.

Troubleshooting guide

Installation error when extracting the plugin ZIP file
When you install the Siren Federate plugin , you might get the following error:

108

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/plugins-filters-fingerprint.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/plugins-filters-fingerprint.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/plugins-filters-fingerprint.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/search-search.html#search-preference
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/search-search.html#search-preference
https://www.elastic.co/guide/en/elasticsearch/reference/7.16/tune-for-search-speed.html#preference-cache-optimization

On Windows

elasticsearch-plugin install PATH-TO-SIREN-FEDERATE-PLUGIN\siren-federate-7.16.3-26.5
.zip
> Downloading PATH-TO-SIREN-FEDERATE-PLUGIN\siren-federate-7.16.3-26.5.zip
[===] 100%
Exception in thread "main" java.nio.file.NoSuchFileException: PATH-TO-ELASTICSEARCH
\plugins.installing-3603227438462114792\plugin-descriptor.properties
at sun.nio.fs.WindowsException.translateToIOException(WindowsException.java:79)
at sun.nio.fs.WindowsException.rethrowAsIOException(WindowsException.java:97)
at sun.nio.fs.WindowsException.rethrowAsIOException(WindowsException.java:102)
at sun.nio.fs.WindowsFileSystemProvider.newByteChannel(WindowsFileSystemProvider.java
:230)
at java.nio.file.Files.newByteChannel(Files.java:361)
at java.nio.file.Files.newByteChannel(Files.java:407)
at java.nio.file.spi.FileSystemProvider.newInputStream(FileSystemProvider.java:384)
at java.nio.file.Files.newInputStream(Files.java:152)
at org.elasticsearch.plugins.PluginInfo.readFromProperties(PluginInfo.java:162)
at org.elasticsearch.plugins.InstallPluginCommand.loadPluginInfo(InstallPluginCommand
.java:724)
at org.elasticsearch.plugins.InstallPluginCommand.installPlugin(InstallPluginCommand
.java:803)
at org.elasticsearch.plugins.InstallPluginCommand.install(InstallPluginCommand.java
:786)
at org.elasticsearch.plugins.InstallPluginCommand.execute(InstallPluginCommand.java
:232)
at org.elasticsearch.plugins.InstallPluginCommand.execute(InstallPluginCommand.java
:217)
at org.elasticsearch.cli.EnvironmentAwareCommand.execute(EnvironmentAwareCommand.java
:86)
at org.elasticsearch.cli.Command.mainWithoutErrorHandling(Command.java:124)
at org.elasticsearch.cli.MultiCommand.execute(MultiCommand.java:77)
at org.elasticsearch.cli.Command.mainWithoutErrorHandling(Command.java:124)
at org.elasticsearch.cli.Command.main(Command.java:90)
at org.elasticsearch.plugins.PluginCli.main(PluginCli.java:47)

On Linux

109

Exception in thread "main" java.nio.file.NoSuchFileException: PATH-TO-
ELASTICSEARCH/plugins/.installing-2425832270248497263/plugin-descriptor.properties
at sun.nio.fs.UnixException.translateToIOException(UnixException.java:86)
at sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:102)
at sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:107)
at sun.nio.fs.UnixFileSystemProvider.newByteChannel(UnixFileSystemProvider.java:214)
at java.nio.file.Files.newByteChannel(Files.java:361)
at java.nio.file.Files.newByteChannel(Files.java:407)
at java.nio.file.spi.FileSystemProvider.newInputStream(FileSystemProvider.java:384)
at java.nio.file.Files.newInputStream(Files.java:152)
at org.elasticsearch.plugins.PluginInfo.readFromProperties(PluginInfo.java:162)
at
org.elasticsearch.plugins.InstallPluginCommand.loadPluginInfo(InstallPluginCommand.jav
a:724)
at
org.elasticsearch.plugins.InstallPluginCommand.installPlugin(InstallPluginCommand.java
:803)
at
org.elasticsearch.plugins.InstallPluginCommand.install(InstallPluginCommand.java:786)
at
org.elasticsearch.plugins.InstallPluginCommand.execute(InstallPluginCommand.java:232)
at
org.elasticsearch.plugins.InstallPluginCommand.execute(InstallPluginCommand.java:217)
at
org.elasticsearch.cli.EnvironmentAwareCommand.execute(EnvironmentAwareCommand.java:86)
at org.elasticsearch.cli.Command.mainWithoutErrorHandling(Command.java:124)
at org.elasticsearch.cli.MultiCommand.execute(MultiCommand.java:77)
at org.elasticsearch.cli.Command.mainWithoutErrorHandling(Command.java:124)
at org.elasticsearch.cli.Command.main(Command.java:90)
at org.elasticsearch.plugins.PluginCli.main(PluginCli.java:47)

This error occurs because the command is being run on the distribution ZIP file, rather than on the
plugin ZIP file inside it.

To resolve this error, complete the following steps:

1. Extract the Siren Federate distribution ZIP file into a local directory.

2. In the extracted directory, locate the plugin ZIP file named siren-federate-7.16.3-26.5-
proguard-plugin.zip. The path to this plugin ZIP file is represented by PATH-TO-SIREN-FEDERATE-
PLUGIN in the command that follows.

3. Run the installation command: $./bin/elasticsearch-plugin install file:///PATH-TO-SIREN-
FEDERATE-PLUGIN/siren-federate-7.16.3-26.5-proguard-plugin.zip

Cannot start the buffer allocator service
The following error message is displayed:

110

file:///PATH-TO-SIREN-FEDERATE-PLUGIN/siren-federate-7.16.3-26.5-proguard-plugin.zip
file:///PATH-TO-SIREN-FEDERATE-PLUGIN/siren-federate-7.16.3-26.5-proguard-plugin.zip

elasticsearch.bootstrap.StartupException: BufferAllocatorException[Cannot start the
buffer allocator service];

This error occurs when the memory root limit is higher than the direct memory limit. The default
direct memory limit is two-thirds of the maximum direct memory size of the JVM.

You can resolve this in one of the following ways:

• Open the config/elasticsearch.yml file and reduce the siren.memory.root.limit parameter to a
value in bytes that is lower than the direct memory limit.

• Open the jvm.options file and increase the direct memory limit. For more information, see
Setting off-heap memory.

Out of memory exception
The following error message is displayed:

out_of_memory_exception: Unable to allocate buffer of size.

This message indicates that off-heap memory allocation is used up. A join might require more
memory than that which is available.

Open the config/elasticsearch.yml file and increase the siren.memory.root.limit parameter to a
value in bytes for the root allocator.

Changing the thread pool queue size
You can modify the thread pools in Siren Federate.

To change the thread pool queue size, follow the instructions in the Elasticsearch documentation.

To verify how much thread pool queue is in use, follow the instructions in the Elasticsearch
documentation.

Supported data types in a join
Siren Federate supports all primitive data types, however you must ensure that the data type of the
joined fields across index patterns is the same.

For example, if you try to join a field from the pattern index*, but the field is an integer in index1
while it is a keyword in index2, an error will result.

For more information, see Configuring joins by type.

111

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cat-thread-pool.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cat-thread-pool.html

Support for joining on the document ID
When supplying the on parameter to the join query, it is not possible to join on the _id meta field, as
this field does not have doc_values enabled.

One solution is to index the _id in a secondary field with doc_values enabled, and use this field in
the join.

You can duplicate the content of the _id field into another field that has doc_values enabled on the
client side or use a set ingest processor.

For more information about how doc_values are scanned during a join, see Configuring joins by
type.

Minimum memory requirements
If you are uncertain about the minimum memory that is required to use Siren Federate, it depends
on the size of your data set and the size of the join.

For more information, see Configuring off-heap memory.

System performance
If the response time of search requests that involve joins is too long, try the following options to
improve the performance of the join:

• Increase the number of nodes or shards in the index. For more information, see the
Elasticsearch documentation.

• Configure a task timeout. For more information, see Search Request.

Release notes

7.16.3-26.5

Improvements

• Upgraded to Elasticsearch version 7.16.3.

7.16.2-26.4

Bug fixes

• Fixed an issue that prevented the execution of an msearch request containing joins on the same
index with different algorithms.

112

https://www.elastic.co/guide/en/elasticsearch/reference/7.16/set-processor.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-split-index.html

7.16.2-26.3

Improvements

• Upgraded to Elasticsearch version 7.16.2. This Elasticsearch release includes fixes for CVE-2021-
45105. For more information, please refer to ESA-2021-31.

7.16.1-26.2

Improvements

• Upgraded to Elasticsearch version 7.16.1. This Elasticsearch release includes fixes for CVE-2021-
44228 and CVE-2021-45046. For more information about these vulnerabilities, refer to ESA-2021-
31.

7.15.2-26.1

Improvements

• Upgraded to Elasticsearch version 7.15.2.

7.15.1-26.0

Improvements

• Upgraded to Elasticsearch version 7.15.1.

• Introduced vectorization of the project phase to increase throughput, including:

◦ Refactoring of tuple processing into pipelines for all join algorithms and all data types.

◦ Reducing the I/O overload by using a contiguous memory chunk.

◦ Improving the vectorized tuples' column reader/writer performance.

Breaking changes

• Removed a deprecated property, siren.io.netty.maxDirectMemory, in favor of the
siren.memory.root.limit setting.

• If Search Guard is the configured security system, the node-level setting
searchguard.allow_custom_headers: "siren.*" must be added to each node of the cluster.

• Changed the format of the JSON response for Cluster APIs Nodes Statistics .

Bug fixes

• Fixed a join cache issue with Elastic X-Pack’s templated queries when they include a
placeholder such as {{ _user: user.name }}.

• Fixed a ConcurrentModificationException in the select phase following a recent change in

113

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45105
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45105
https://discuss.elastic.co/t/apache-log4j2-remote-code-execution-rce-vulnerability-cve-2021-44228-esa-2021-31/291476
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45046
https://discuss.elastic.co/t/apache-log4j2-remote-code-execution-rce-vulnerability-cve-2021-44228-esa-2021-31/291476
https://discuss.elastic.co/t/apache-log4j2-remote-code-execution-rce-vulnerability-cve-2021-44228-esa-2021-31/291476

Elasticsearch version 7.15 involving the FieldUsageTrackingDirectoryReader.

• Adjusted the validation query in the datasource validation endpoint with the latest Avatica JDBC
connector.

• Adjusted the autoCommit setting to work with the latest Avatica JDBC connector.

• Fixed a rare issue where a cluster is unable to initialize a Federate job due to a closed
RootBufferManager on a node.

• Fixed a broken link to the _sample method in the connector APIs documentation.

Glossary
Many of the terms that are used in the Siren Federate documentation are also used in Elasticsearch.
For more information, see the Elasticsearch glossary.

action

The type of request that can be executed on a cluster or an index. Actions are controlled and
limited by user role permissions. For more information, see Configuring security for Siren
Federate.]

API

The acronym for Application Programming Interface, which is a software intermediary that
allows two applications to talk to each other.

broadcast join

A distributed join execution strategy, which copies the child set and duplicates it across every
node of the cluster.

child set

During a join of indices A and B, a search is performed against index A as it is filtered by its
relation to index B. In this example, the child set is index B (the filtering set) and the parent set is
index A (the filtered set). Note: A set of documents can come from multiple indices.

cluster

One or more nodes that share the same cluster name.

datasource

An external source of data, such as a remote Elasticsearch cluster or a MySQL database behind
an Avatica server. For more information, see Connecting to remote datasources.

document

A JSON document that is stored in Elasticsearch. A document is like a row in a table in a
relational database. Each document is stored in an index and has a unique identifier associated
with it.

Federate cluster

An Elasticsearch cluster that has the Siren Federate plugin installed.

114

https://www.elastic.co/guide/en/elastic-stack-glossary/current/terms.html

federation

The process that maps different external database systems into a unified API so that it can be
used for business intelligence (BI) or other analysis.

hash join

A distributed join execution strategy, where the two data sets are partitioned using a hash
function across every node of the cluster, and where a hash table is used to find matching rows
between the two inputs.

index

An optimized collection of JSON documents. An index is a logical namespace that maps to one or
more primary shards and can have zero or more replica shards.

inner join

Enables the projection of arbitrary fields (including script fields and document’s scores) from
the child set, B, and combines them with the parent set, A. The projected fields and associated
values of a document from set B are mapped to all of the documents from set A that satisfy the
join condition. The result of the join is the parent set, A, augmented by the projected fields from
the child set, B. See also, parent set, child set.

I/O

Disk I/O and caching occurs when the database engine reads and writes blocks containing
records to and from a disk into memory. The next time the engine needs that block, it can access
it from memory, rather than reading it from the disk.

join

A binary operator that is used to combine data from two sets of documents. The result of a join is
the set of all combinations of documents in the two sets of documents that are equal on their
common attribute names. For information about the different join strategies that are available,
see Configuring joins by type.

join query

The type of query syntax to use when you want to perform a join. See also, query. For more
information, see Query DSL .

left-side set

See parent set. Also known as the 'left index'.

node

An instance of Elasticsearch that belongs to a cluster. A node can combine different roles, such
as a master-eligible node, a data node, an ingestion node, a transformation node, or a machine-
learning (ML) node.

parallelization

A method of processing, whereby many operations are performed simultaneously - as opposed
to serial processing, in which the computational steps are performed sequentially.
Parallelization improves system performance through the simultaneous processing of various
operations, such as loading data, building indexes, and evaluating queries.

115

parent set

During a join of indices A and B, a search is performed against index A as it is filtered by its
relation to index B. In this example, the parent set is index A (the filtered set) and the child set is
index B (the filtering set). Note: A set of documents may come from multiple indices.

partitioning

The process of breaking data in a database down into partitions. Each piece of data resides in
exactly one partition. Partitioning is performed to ensure scalability, as entire data might not fit
into a single node. Different partitions can reside on different nodes and each node can serve
the queries with its own partition. See also, shard.

primary shard

Each document is stored in a single primary shard. When you index a document, it is indexed
first on the primary shard, then on all replicas of the primary shard.

query

A request for information from Elasticsearch. A query represents a question, which is written in
a way that Elasticsearch understands. A search consists of one or more queries combined.

reflection

The import and mapping of data to Elasticsearch from external datasources. A reflection is a
recurrent and fully-managed ingestion that replicates the data from a datasource into an
Elasticsearch index. See also, datasource.

replica shard

Each primary shard can have zero or more replicas. A replica is a copy of the primary shard,
and has two purposes:

• Increased failover: A replica shard can be promoted to a primary shard if the existing
primary shard fails.

• Improved performance: The get and search requests can be handled by primary or replica
shards.

right-side set

See child set. Also known as the 'right index'.

semi-join

Filters the parent set (A), based on the child set (B). A semi-join returns the documents of A that
satisfy the join condition with the documents of B. This is equivalent to the EXISTS() operator in
SQL.

shard

A partition of an index in Elasticsearch. Each shard is held on a separate node to spread load.
See also, partitioning and primary shard.

tuple

A single row that is composed of one or more columns, where one column is mapped to one field
of a document. For example, a tuple can be a row that is composed of two elements, such as the

116

document identifier and the key value of the join condition. If a document has a multi-valued
field, this will generate as many tuples as there are values.

virtual index

An Elasticsearch index that is created by the Federate plugin when mapping remote
Elasticsearch clusters. The virtual index that is created does not contain the data itself. Instead, it
contains information about the data source and its metadata. It is then used in search and get
queries as any other index would be. For more information, see Connecting to remote
datasources.

117

	Siren Federate User Guide
	Table of Contents
	Introduction to Siren Federate
	The federation of remote Elasticsearch clusters
	The reflection of external databases
	A distributed join between indices
	Join query cache

	Architecture
	Distributed Join Workflow
	Query Planning & Optimisation
	IO

	Getting Started
	Installing the Siren Federate Plugin
	Starting Elasticsearch
	Loading Some Relational Data
	Relational Querying of the Data

	Setting up Siren Federate
	Configuring logging
	Configuring the off-heap memory
	Configuring security for Siren Federate
	Connecting to remote datasources
	Configuring joins by type

	Federate Modules
	Planner
	Memory
	IO
	Thread Pools
	Query Cache
	Connector

	Search APIs
	Search API
	Multi Search API
	Search Request
	Search Response
	Cancelling a request
	Validating a request

	Query domain-specific language (DSL)
	Join query

	Paginating a Search Request
	Open and Close Point-In-Times
	Pagination
	Limitations

	Cluster APIs
	Nodes Statistics

	Index APIs
	Query Cache

	Connector APIs
	Configuring a JDBC-enabled node
	Datasource API
	Virtual index API
	Ingestion API
	Job API

	Sessions APIs
	Get Sessions
	Clear Sessions

	License APIs
	Put License
	Get License
	Delete License

	Performance Considerations
	Join types
	Numeric versus string attributes
	Vectorized pipeline performance
	Using the preference parameter for search requests
	Caution when force-merging single-segment indices

	Troubleshooting guide
	Installation error when extracting the plugin ZIP file
	Cannot start the buffer allocator service
	Out of memory exception
	Changing the thread pool queue size
	Supported data types in a join
	Support for joining on the document ID
	Minimum memory requirements
	System performance

	Release notes
	7.16.3-26.5
	7.16.2-26.4
	7.16.2-26.3
	7.16.1-26.2
	7.15.2-26.1
	7.15.1-26.0

	Glossary

